Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 79675 by ajfour last updated on 27/Jan/20

Commented by ajfour last updated on 27/Jan/20

The square has side s.  Can we find a set of radii values?

$${The}\:{square}\:{has}\:{side}\:{s}. \\ $$$${Can}\:{we}\:{find}\:{a}\:{set}\:{of}\:{radii}\:{values}? \\ $$

Commented by ajfour last updated on 27/Jan/20

Commented by ajfour last updated on 27/Jan/20

Thank you sir! good question,  i  think too.

$${Thank}\:{you}\:{sir}!\:{good}\:{question}, \\ $$$${i}\:\:{think}\:{too}. \\ $$

Commented by mr W last updated on 27/Jan/20

let c=λs  (a+c)^2 −(a−c)^2 =(s−c)^2   4ac=(s−c)^2   ⇒a=(((s−c)^2 )/(4c))=(((1−λ)^2 s)/(4λ))    (b+c)^2 −(s−b−c)^2 =c^2   2bs=(s−c)^2   ⇒b=(((s−c)^2 )/(2s))=(((1−λ)^2 s)/2)    a+b=s  ⇒(((1−λ)^2 )/(4λ))+(((1−λ)^2 )/2)=1  ⇒(1−λ)^2 (2λ+1)=4λ  ⇒2λ^3 −3λ^2 −4λ+1=0  ⇒(λ+1)(2λ^2 −5λ+1)=0  ⇒λ=−1<0  ⇒λ=((5±(√(17)))/4)  should <1  ⇒there is only one set of radii with  λ=((5−(√(17)))/4)≈0.219  a=(((7+(√(17)))s)/(16))≈0.695s  b=(((9−(√(17)))s)/(16))≈0.305s  c=(((5−(√(17)))s)/4)≈0.219s

$${let}\:{c}=\lambda{s} \\ $$$$\left({a}+{c}\right)^{\mathrm{2}} −\left({a}−{c}\right)^{\mathrm{2}} =\left({s}−{c}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{ac}=\left({s}−{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{\left({s}−{c}\right)^{\mathrm{2}} }{\mathrm{4}{c}}=\frac{\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} {s}}{\mathrm{4}\lambda} \\ $$$$ \\ $$$$\left({b}+{c}\right)^{\mathrm{2}} −\left({s}−{b}−{c}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\mathrm{2}{bs}=\left({s}−{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{b}=\frac{\left({s}−{c}\right)^{\mathrm{2}} }{\mathrm{2}{s}}=\frac{\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} {s}}{\mathrm{2}} \\ $$$$ \\ $$$${a}+{b}={s} \\ $$$$\Rightarrow\frac{\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} }{\mathrm{4}\lambda}+\frac{\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \left(\mathrm{2}\lambda+\mathrm{1}\right)=\mathrm{4}\lambda \\ $$$$\Rightarrow\mathrm{2}\lambda^{\mathrm{3}} −\mathrm{3}\lambda^{\mathrm{2}} −\mathrm{4}\lambda+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\lambda+\mathrm{1}\right)\left(\mathrm{2}\lambda^{\mathrm{2}} −\mathrm{5}\lambda+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=−\mathrm{1}<\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{5}\pm\sqrt{\mathrm{17}}}{\mathrm{4}}\:\:{should}\:<\mathrm{1} \\ $$$$\Rightarrow{there}\:{is}\:{only}\:{one}\:{set}\:{of}\:{radii}\:{with} \\ $$$$\lambda=\frac{\mathrm{5}−\sqrt{\mathrm{17}}}{\mathrm{4}}\approx\mathrm{0}.\mathrm{219} \\ $$$${a}=\frac{\left(\mathrm{7}+\sqrt{\mathrm{17}}\right){s}}{\mathrm{16}}\approx\mathrm{0}.\mathrm{695}{s} \\ $$$${b}=\frac{\left(\mathrm{9}−\sqrt{\mathrm{17}}\right){s}}{\mathrm{16}}\approx\mathrm{0}.\mathrm{305}{s} \\ $$$${c}=\frac{\left(\mathrm{5}−\sqrt{\mathrm{17}}\right){s}}{\mathrm{4}}\approx\mathrm{0}.\mathrm{219}{s} \\ $$

Commented by mr W last updated on 27/Jan/20

nice question!

$${nice}\:{question}! \\ $$

Commented by MJS last updated on 27/Jan/20

can we find a solution when AB is not parallel  to s? it might get hard...

$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{when}\:{AB}\:\mathrm{is}\:\mathrm{not}\:\mathrm{parallel} \\ $$$$\mathrm{to}\:{s}?\:\mathrm{it}\:\mathrm{might}\:\mathrm{get}\:\mathrm{hard}... \\ $$

Commented by ajfour last updated on 27/Jan/20

it came out automatically,  question did not give such a  condition, Sir.

$${it}\:{came}\:{out}\:{automatically}, \\ $$$${question}\:{did}\:{not}\:{give}\:{such}\:{a} \\ $$$${condition},\:{Sir}. \\ $$

Commented by mr W last updated on 27/Jan/20

since centers A and B are on the  opposite sides, we have automatically  a+b=s.

$${since}\:{centers}\:{A}\:{and}\:{B}\:{are}\:{on}\:{the} \\ $$$${opposite}\:{sides},\:{we}\:{have}\:{automatically} \\ $$$${a}+{b}={s}. \\ $$

Commented by MJS last updated on 27/Jan/20

ok

$$\mathrm{ok} \\ $$

Commented by mr W last updated on 27/Jan/20

MJS sir: do you have experience with  trilinear coordinates system? can it  be helpful to solve Q79694? thanks!

$${MJS}\:{sir}:\:{do}\:{you}\:{have}\:{experience}\:{with} \\ $$$${trilinear}\:{coordinates}\:{system}?\:{can}\:{it} \\ $$$${be}\:{helpful}\:{to}\:{solve}\:{Q}\mathrm{79694}?\:{thanks}! \\ $$

Commented by MJS last updated on 27/Jan/20

sorry I can′t help

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{help} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com