All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79730 by Henri Boucatchou last updated on 27/Jan/20
I)ForwitchvalueofαtheintegralC=∫0∞(11+2x2−1x+1)dxconveege?Andinthiscasecalculateα.II)LetΔ={(x;y)/∣x∣+∣y∣⩽2}a)CalculateI1=∫∫Δdxdyand∫∫Δdxdy(∣x∣+∣y∣)2+4
Commented by Henri Boucatchou last updated on 27/Jan/20
Pleaseαishere:C=∫0∞(11+2x2−α1+x)dx...
Answered by mind is power last updated on 28/Jan/20
f(x)=11+2x2−11+xcontinusx→∞f(x)=(x+1)−(1+2x2)(x+1)1+2x2=2x−x2(x+1)(1+2x2)(x+1+1+2x2)∼−x2x32.(1+2)=−1x2(1+2)notintegrablin+∞Cdivergea)∫∫Δdxdyx∈[−2,2]∣y∣<2−∣x∣⇒∣x∣−2⩽y⩽2−∣x∣=∫−22∫∣x∣−22−∣x∣dxdy=∫−22[4−2∣x∣]dx=2∫02[4−2x]dx=16−2(4)=8∫∫Δdxdy(∣x∣+∣y∣)2+4wehaveΔ=∪4i=1DiD1=(x,y)∣x+y<2,D2x−y<2,D3=−x+y<2,D4−x−y<2∣g(x,y)=1(∣x∣+∣y∣)2+4isinvsriantinsenseg(−+x,−+y)=g(x,y)D1=φ(D2)=φ′(D3)=φ″(D4)φ(x,y)=(x,−y)φ′(x,y)=(−x,y)φ″(x,y)=(−x,−y)goφi(x,y)=g(x,h),i∈{1,2,3}⇒∫∫Dig(x,y)dxdy=∫∫Djg(x,y)dxdy,∀i,j∈{1,2,3,4}⇒∫∫Δg(x,y)dxdy=4∫∫D1g(x,y)dxdy=4∫02∫02−xdxdy(x+y)2+4∫02∫02−xdy((x+y2)2+1)dx=∫022∫02−x12dy((x+y2)2+1)=∫022.[tan−1(x+y2)]02−x]dx=2∫02(π4−tan−(x2)]bypart=π−2∫02tan−1(x2)dx=π−2[[02xtan−1(x2)]−∫022x1+x2]dxπ−4tan−(1)+2ln(5)=2ln(5)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com