Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79730 by Henri Boucatchou last updated on 27/Jan/20

I)  For witch value of α the integral   C=∫_0 ^( ∞) ((1/(√(1+2x^2 )))−(1/(x+1)))dx  conveege  ?  And in this case calculate α.  II)  Let Δ={(x; y)/ ∣x∣+∣y∣≤2}       a) Calculate I_1 = ∫∫_Δ dxdy   and  ∫∫_Δ ((dxdy)/((∣x∣+∣y∣)^2 +4))

I)ForwitchvalueofαtheintegralC=0(11+2x21x+1)dxconveege?Andinthiscasecalculateα.II)LetΔ={(x;y)/x+y∣⩽2}a)CalculateI1=ΔdxdyandΔdxdy(x+y)2+4

Commented by Henri Boucatchou last updated on 27/Jan/20

 Please α is here :  C=∫_0 ^( ∞) ((1/(√(1+2x^2 )))−(α/(1+x)))dx...

Pleaseαishere:C=0(11+2x2α1+x)dx...

Answered by mind is power last updated on 28/Jan/20

f(x)=(1/(√(1+2x^2 )))−(1/(1+x))  continus x→∞  f(x)=(((x+1)−(√((1+2x^2 ))))/((x+1)(√(1+2x^2 ))))=((2x−x^2 )/((x+1)(√((1+2x^2 )))(x+1+(√(1+2x^2 )))))  ∼((−x^2 )/(x^3 (√2).(1+(√2))))=−(1/(x(√2)(1+(√2)))) not integrabl in+∞  C diverge  a)∫∫_Δ dxdy  x∈[−2,2]  ∣y∣<2−∣x∣  ⇒∣x∣−2≤y≤2−∣x∣  =∫_(−2) ^2 ∫_(∣x∣−2) ^(2−∣x∣) dxdy  =∫_(−2) ^2 [4−2∣x∣]dx  =2∫_0 ^2 [4−2x]dx  =16−2(4)=8  ∫∫_Δ ((dxdy)/((∣x∣+∣y∣)^2 +4))  we haveΔ=∪_(i=1) ^4 D_i   D_1 =(x,y)∣   x+y<2,D_2 x−y<2,D_3 =−x+y<2,D_4 −x−y<2∣  g(x,y)=(1/((∣x∣+∣y∣)^2 +4))  is invsriant in sense  g(_− ^+ x,_− ^+ y)=g(x,y)  D_1 =ϕ(D_2 )=ϕ′(D_3 )=ϕ′′(D_4 )  ϕ(x,y)=(x,−y)  ϕ′(x,y)=(−x,y)  ϕ′′(x,y)=(−x,−y)  goϕ^i (x,y)=g(x,h),i∈{1,2,3}  ⇒∫∫_D_i  g(x,y)dxdy=∫∫_D_j  g(x,y)dxdy,∀i,j∈{1,2,3,4}  ⇒∫∫_Δ g(x,y)dxdy=4∫∫_D_1  g(x,y)dxdy  =4∫_0 ^2 ∫_0 ^(2−x) ((dxdy)/((x+y)^2 +4))  ∫_0 ^2 ∫_0 ^(2−x) (dy/(((((x+y)/2))^2 +1)))dx=∫_0 ^2 2∫_0 ^(2−x) (1/2)(dy/(((((x+y)/2))^2 +1)))  =∫_0 ^2 2.[tan^(−1) (((x+y)/2))]_0 ^(2−x) ]dx  =2∫_0 ^2 ((π/4)−tan^− ((x/2))]  by part  =π−2∫_0 ^2 tan^(−1) ((x/2))dx=π−2[[_0 ^2 xtan^(−1) ((x/2))]−∫_0 ^2 ((2x)/(1+x^2 ))]dx  π−4tan^− (1)+2ln(5)=2ln(5)

f(x)=11+2x211+xcontinusxf(x)=(x+1)(1+2x2)(x+1)1+2x2=2xx2(x+1)(1+2x2)(x+1+1+2x2)x2x32.(1+2)=1x2(1+2)notintegrablin+Cdivergea)Δdxdyx[2,2]y∣<2x⇒∣x2y2x=22x22xdxdy=22[42x]dx=202[42x]dx=162(4)=8Δdxdy(x+y)2+4wehaveΔ=4i=1DiD1=(x,y)x+y<2,D2xy<2,D3=x+y<2,D4xy<2g(x,y)=1(x+y)2+4isinvsriantinsenseg(+x,+y)=g(x,y)D1=φ(D2)=φ(D3)=φ(D4)φ(x,y)=(x,y)φ(x,y)=(x,y)φ(x,y)=(x,y)goφi(x,y)=g(x,h),i{1,2,3}Dig(x,y)dxdy=Djg(x,y)dxdy,i,j{1,2,3,4}Δg(x,y)dxdy=4D1g(x,y)dxdy=40202xdxdy(x+y)2+40202xdy((x+y2)2+1)dx=02202x12dy((x+y2)2+1)=022.[tan1(x+y2)]02x]dx=202(π4tan(x2)]bypart=π202tan1(x2)dx=π2[[02xtan1(x2)]022x1+x2]dxπ4tan(1)+2ln(5)=2ln(5)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com