Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 79735 by Rio Michael last updated on 27/Jan/20

write tanhx in terms of e, hence prove that   tanh2x = ((2tanhx)/(1+tanh^2 x))

writetanhxintermsofe,henceprovethattanh2x=2tanhx1+tanh2x

Answered by Henri Boucatchou last updated on 28/Jan/20

tanhx=((e^x −e^(−x) )/(e^x +e^(−x) ))     tanh2x=((sh2x)/(ch2x))=((2shx chx)/(ch^2 x+sh^2 x))  we  have   { ((sh2x=2shx chx)),((ch2x=ch^2 x+sh^2 x)) :} ⇒  th2x=((sh2x)/(ch2x))=((2shx chx)/(ch^2 x+sh^2 x))  ⇒  tanh2x=((2((shx)/(chx)))/(1+(((shx)/(chx)))^2 ))=((2tanhx)/(1+tanh^2 x))

tanhx=exexex+extanh2x=sh2xch2x=2shxchxch2x+sh2xwehave{sh2x=2shxchxch2x=ch2x+sh2xth2x=sh2xch2x=2shxchxch2x+sh2xtanh2x=2shxchx1+(shxchx)2=2tanhx1+tanh2x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com