Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 79756 by mathmax by abdo last updated on 27/Jan/20

calculate lim_(x→1)   ((sin(πx))/(1−x^2 ))  without hospital rule

calculatelimx1sin(πx)1x2withouthospitalrule

Commented by john santu last updated on 27/Jan/20

lim_(x→1)  (((sin (π−πx))/((π−πx))))×lim_(x→1)  (((π−πx))/(1−x^2 ))  = 1× lim_(x→1)  ((π(1−x))/((1−x)(1+x)))  = (π/2)

limx1(sin(ππx)(ππx))×limx1(ππx)1x2=1×limx1π(1x)(1x)(1+x)=π2

Commented by mathmax by abdo last updated on 28/Jan/20

changement 1−x=t give   lim_(x→1)  ((sin(πx))/(1−x^2 )) =lim_(t→0)    ((sin(π(1−t)))/(1−(1−t)^2 ))  =lim_(t→0)    ((sin(πt))/(1−(t^2 −2t +1))) =lim_(t→0)    ((sin(πt))/(2t−t^2 ))  =lim_(t→0)    ((sin(πt))/(πt))×((πt)/(2t−t^2 )) =lim_(t→0)   ((sin(πt))/(πt))×lim_(t→0)   (π/(2−t))  =1×(π/2) =(π/2)

changement1x=tgivelimx1sin(πx)1x2=limt0sin(π(1t))1(1t)2=limt0sin(πt)1(t22t+1)=limt0sin(πt)2tt2=limt0sin(πt)πt×πt2tt2=limt0sin(πt)πt×limt0π2t=1×π2=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com