Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79758 by mathmax by abdo last updated on 27/Jan/20

find value of ∫_0 ^1 ln(1+ix^2 )dx and ∫_0 ^1 ln(1−ix^2 )dx with i=(√(−1))

findvalueof01ln(1+ix2)dxand01ln(1ix2)dxwithi=1

Commented by mathmax by abdo last updated on 29/Jan/20

let z from C and f(z)=∫_0 ^1 ln(1+zx^2 )dx ⇒  f^′ (z)=∫_0 ^1  (x^2 /(1+zx^2 ))dx =(1/z) ∫_0 ^1 ((zx^2 +1−1)/(1+zx^2 ))dx  =(1/z) −(1/z) ∫_0 ^1  (dx/(1+zx^2 )) and   ∫_0 ^1  (dx/(1+zx^2 )) =_(x(√z)=t)   ∫_0 ^(√z)    (dt/((√z)(1+t^2 )))  =(1/(√z)) arctan((√z)) ⇒f^′ (z)=(1/z)−((arctan((√z)))/(z(√z))) ⇒  f(z)=lnz  +∫_1 ^z  ((arctan((√u)))/(u(√u))) du +c    (u=t^2 )  =lnz +∫_1 ^(√z)   ((arctan(t))/t^3 )(2t)dt +c =ln(z)+2∫_1 ^(√z)   ((arctan(t))/t^2 )dt +c  f(1) =∫_0 ^1 ln(1+x^2 )dx =c ⇒  f(z) =lnz +2∫_1 ^(√z)   ((arctan(t))/t^2 )dt +∫_0 ^1  ln(1+x^2 )dx  we have by parts  ∫_1 ^(√z)  ((arctan(t))/t^2 )dt =[−((arctant)/t)]_1 ^(√z) +∫_1 ^(√z)  (1/(t(1+t^2 )))dt  =(π/4)−((arctan((√z)))/(√z)) +∫_1 ^(√z) ((1/t)−(t/(t^2 +1)))dt  =(π/4)−((arctan((√z)))/(√z)) +ln((√z))−[(1/2)ln(t^2  +1)]_1 ^(√z)   =(π/4)−((arctan((√z)))/(√z)) +(1/2)ln(z)−(1/2){ln(z+1)−ln(2)} ⇒  f(z)=ln(z)+(π/2)−((2arctan((√z)))/(√z)) +ln(z)−ln(z+1)+ln(2)+∫_0 ^1 ln(1+x^2 )dx  f(z)=2ln(z)+(π/2) −2((arctan((√z)))/(√z)) −ln(z+1)+ln(2)+∫_0 ^1 ln(1+x^2 )dx  by parts ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )]_0 ^1 −∫_0 ^1 ((2x^2 )/(1+x^2 ))dx  =ln(2)−2 ∫_0 ^1  ((1+x^2 −1)/(1+x^2 ))dx =ln(2)−2 +2 ×(π/4) =ln(2)−2+(π/2) ⇒  f(z) =2ln(z) +2ln(2) +π −2 −2((arctan((√z)))/(√z)) −ln(z+1)  =∫_0 ^1 ln(1+zx^2 )dx ⇒  ∫_0 ^1 ln(1+ix^2 )dx =f(i) =2ln(i)+2ln(2)+π−2−2 ×((arctan((√i)))/(√i))  −ln(i+1)  =2×((iπ)/2) +2ln(2)+π−2 −2 ×((arctan(e^((iπ)/4) ))/e^((iπ)/4) )−ln((√2)e^((iπ)/4) )  =iπ +2ln(2)+π−2 −2e^(−((iπ)/4))  arctan(e^((iπ)/4) )−(1/2)ln(2)−((iπ)/4)

letzfromCandf(z)=01ln(1+zx2)dxf(z)=01x21+zx2dx=1z01zx2+111+zx2dx=1z1z01dx1+zx2and01dx1+zx2=xz=t0zdtz(1+t2)=1zarctan(z)f(z)=1zarctan(z)zzf(z)=lnz+1zarctan(u)uudu+c(u=t2)=lnz+1zarctan(t)t3(2t)dt+c=ln(z)+21zarctan(t)t2dt+cf(1)=01ln(1+x2)dx=cf(z)=lnz+21zarctan(t)t2dt+01ln(1+x2)dxwehavebyparts1zarctan(t)t2dt=[arctantt]1z+1z1t(1+t2)dt=π4arctan(z)z+1z(1ttt2+1)dt=π4arctan(z)z+ln(z)[12ln(t2+1)]1z=π4arctan(z)z+12ln(z)12{ln(z+1)ln(2)}f(z)=ln(z)+π22arctan(z)z+ln(z)ln(z+1)+ln(2)+01ln(1+x2)dxf(z)=2ln(z)+π22arctan(z)zln(z+1)+ln(2)+01ln(1+x2)dxbyparts01ln(1+x2)dx=[xln(1+x2)]01012x21+x2dx=ln(2)2011+x211+x2dx=ln(2)2+2×π4=ln(2)2+π2f(z)=2ln(z)+2ln(2)+π22arctan(z)zln(z+1)=01ln(1+zx2)dx01ln(1+ix2)dx=f(i)=2ln(i)+2ln(2)+π22×arctan(i)iln(i+1)=2×iπ2+2ln(2)+π22×arctan(eiπ4)eiπ4ln(2eiπ4)=iπ+2ln(2)+π22eiπ4arctan(eiπ4)12ln(2)iπ4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com