All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79758 by mathmax by abdo last updated on 27/Jan/20
findvalueof∫01ln(1+ix2)dxand∫01ln(1−ix2)dxwithi=−1
Commented by mathmax by abdo last updated on 29/Jan/20
letzfromCandf(z)=∫01ln(1+zx2)dx⇒f′(z)=∫01x21+zx2dx=1z∫01zx2+1−11+zx2dx=1z−1z∫01dx1+zx2and∫01dx1+zx2=xz=t∫0zdtz(1+t2)=1zarctan(z)⇒f′(z)=1z−arctan(z)zz⇒f(z)=lnz+∫1zarctan(u)uudu+c(u=t2)=lnz+∫1zarctan(t)t3(2t)dt+c=ln(z)+2∫1zarctan(t)t2dt+cf(1)=∫01ln(1+x2)dx=c⇒f(z)=lnz+2∫1zarctan(t)t2dt+∫01ln(1+x2)dxwehavebyparts∫1zarctan(t)t2dt=[−arctantt]1z+∫1z1t(1+t2)dt=π4−arctan(z)z+∫1z(1t−tt2+1)dt=π4−arctan(z)z+ln(z)−[12ln(t2+1)]1z=π4−arctan(z)z+12ln(z)−12{ln(z+1)−ln(2)}⇒f(z)=ln(z)+π2−2arctan(z)z+ln(z)−ln(z+1)+ln(2)+∫01ln(1+x2)dxf(z)=2ln(z)+π2−2arctan(z)z−ln(z+1)+ln(2)+∫01ln(1+x2)dxbyparts∫01ln(1+x2)dx=[xln(1+x2)]01−∫012x21+x2dx=ln(2)−2∫011+x2−11+x2dx=ln(2)−2+2×π4=ln(2)−2+π2⇒f(z)=2ln(z)+2ln(2)+π−2−2arctan(z)z−ln(z+1)=∫01ln(1+zx2)dx⇒∫01ln(1+ix2)dx=f(i)=2ln(i)+2ln(2)+π−2−2×arctan(i)i−ln(i+1)=2×iπ2+2ln(2)+π−2−2×arctan(eiπ4)eiπ4−ln(2eiπ4)=iπ+2ln(2)+π−2−2e−iπ4arctan(eiπ4)−12ln(2)−iπ4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com