Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 79761 by Najaah last updated on 28/Jan/20

(x^2 +2)y′′ + xy = 0

$$\left({x}^{\mathrm{2}} +\mathrm{2}\right){y}''\:+\:{xy}\:=\:\mathrm{0} \\ $$

Commented by abdomathmax last updated on 28/Jan/20

solution developpable at?integr serie  y(x)=Σ_(n=0) ^∞  a_n x^n  ⇒y^′ =Σ_(n=1) ^∞ na_n x^(n−1)  ⇒  y^((2)) (x)=Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   (e) ⇒(x^2 +2)Σ_(n=2) ^∞ n(n−1)a_n x^(n−2) +Σ_(n=0) ^∞ a_n x^(n+1) =0  ⇒Σ_(n=2) ^∞ n(n−1)a_n x^n  +2Σ_(n=2) ^∞ n(n−1)a_n  x^(n−2)   +Σ_(n=1) ^∞ a_(n−1) x^n  =0 ⇒  a_0  +Σ_(n=2) ^∞ {n(n−1)a_n +a_(n−1) }x^n          +2a_2   +2Σ_(n=1) ^∞  (n+2)(n+1)a_(n+2)  x^n =0  ⇒a_0  +2a_2   +Σ_(n=2) ^∞ {n(n−1)a_n +a_(n−1) +(n+2)(n+1)a_(n+2) }x^n =0  ⇒a_0  +2a_2 =0 and  (n+2)(n+1)a_(n+2) +n(n−1)a_n  +a_(n−1) =0 ∀n≥2  ...be continued...

$${solution}\:{developpable}\:{at}?{integr}\:{serie} \\ $$$${y}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\Rightarrow{y}^{'} =\sum_{{n}=\mathrm{1}} ^{\infty} {na}_{{n}} {x}^{{n}−\mathrm{1}} \:\Rightarrow \\ $$$${y}^{\left(\mathrm{2}\right)} \left({x}\right)=\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} \\ $$$$\left({e}\right)\:\Rightarrow\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} +\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}+\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}} \:+\mathrm{2}\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} \:{x}^{{n}−\mathrm{2}} \\ $$$$+\sum_{{n}=\mathrm{1}} ^{\infty} {a}_{{n}−\mathrm{1}} {x}^{{n}} \:=\mathrm{0}\:\Rightarrow \\ $$$${a}_{\mathrm{0}} \:+\sum_{{n}=\mathrm{2}} ^{\infty} \left\{{n}\left({n}−\mathrm{1}\right){a}_{{n}} +{a}_{{n}−\mathrm{1}} \right\}{x}^{{n}} \:\:\:\:\:\:\:\:\:+\mathrm{2}{a}_{\mathrm{2}} \\ $$$$+\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \:\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} \:{x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{0}} \:+\mathrm{2}{a}_{\mathrm{2}} \:\:+\sum_{{n}=\mathrm{2}} ^{\infty} \left\{{n}\left({n}−\mathrm{1}\right){a}_{{n}} +{a}_{{n}−\mathrm{1}} +\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} \right\}{x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{0}} \:+\mathrm{2}{a}_{\mathrm{2}} =\mathrm{0}\:{and} \\ $$$$\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} +{n}\left({n}−\mathrm{1}\right){a}_{{n}} \:+{a}_{{n}−\mathrm{1}} =\mathrm{0}\:\forall{n}\geqslant\mathrm{2} \\ $$$$...{be}\:{continued}... \\ $$

Answered by Henri Boucatchou last updated on 28/Jan/20

we  have  ((y′′)/y)=−(x/(x^2 +2))  ⇒ lny′=−(1/2)ln(x^2 +2)  ⇒  y′=(x^2 +2)^(−1/2)   ⇒y=∫(x^2 +2)^(−1/2) dx=ln(x+(√(x^2 +2)))+Cte

$${we}\:\:{have}\:\:\frac{{y}''}{{y}}=−\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{2}}\:\:\Rightarrow\:{lny}'=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{2}\right) \\ $$$$\Rightarrow\:\:{y}'=\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$\Rightarrow{y}=\int\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{−\mathrm{1}/\mathrm{2}} {dx}={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)+{Cte} \\ $$

Commented by mr W last updated on 28/Jan/20

sir:  ((d(ln y′))/dx)=((y′′)/(y′))≠((y′′)/y)  ((y′′)/y)=−(x/(x^2 +2))  ⇏ lny′=−(1/2)ln(x^2 +2)+C

$${sir}: \\ $$$$\frac{{d}\left(\mathrm{ln}\:{y}'\right)}{{dx}}=\frac{{y}''}{{y}'}\neq\frac{{y}''}{{y}} \\ $$$$\frac{{y}''}{{y}}=−\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{2}}\:\:\nRightarrow\:{lny}'=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{2}\right)+{C} \\ $$

Commented by abdomathmax last updated on 28/Jan/20

not correct

$${not}\:{correct} \\ $$

Commented by jagoll last updated on 28/Jan/20

how to get it?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{it}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com