Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79824 by TawaTawa last updated on 28/Jan/20

Commented by TawaTawa last updated on 28/Jan/20

Thanks for your time sir. God bless you

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Commented by TawaTawa last updated on 28/Jan/20

Will be waiting sir

$$\mathrm{Will}\:\mathrm{be}\:\mathrm{waiting}\:\mathrm{sir} \\ $$

Commented by MJS last updated on 29/Jan/20

sorry but changment t=tan (x/2) gives  ∫((2dt)/(p(t^2 +1)+(√(1−t^4 ))))

$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{changment}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\mathrm{gives} \\ $$$$\int\frac{\mathrm{2}{dt}}{{p}\left({t}^{\mathrm{2}} +\mathrm{1}\right)+\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }} \\ $$

Commented by mind is power last updated on 29/Jan/20

this One is note easy i will try Too find a/way To give  Closed form if i can find it

$${this}\:{One}\:{is}\:{note}\:{easy}\:{i}\:{will}\:{try}\:{Too}\:{find}\:{a}/{way}\:{To}\:{give} \\ $$$${Closed}\:{form}\:{if}\:{i}\:{can}\:{find}\:{it} \\ $$

Commented by mathmax by abdo last updated on 29/Jan/20

let take a try   A =∫_0 ^(π/2)  (dx/(p+(√(cosx))))  cha7gement  tan((x/2))=t give  A =∫_0 ^1   (1/(p+(√((1−t^2 )/(1+t^2 )))))×(2/(1+t^2 ))dt =2 ∫_0 ^1   (dt/(p(1+t^2 )+(√(1−t^4 ))))  =2 ∫_0 ^1 ((p(1+t^2 )−(√(1−t^4 )))/(p^2 (1+t^2 )^2 −(1−t^4 )))dt =2p ∫_0 ^1   ((t^2  +1)/(p^2 (t^4  +2t^2  +1)−1+t^4 ))dt  −2 ∫_0 ^1   ((√(1−t^4 ))/(p^2 (t^4  +2t^2  +1)−1+t^4 ))dt  =2p ∫_0 ^1  ((t^2  +1)/((p^2  +1)t^4  +2p^2 t^2  +p^2  −1))dt −2 ∫_0 ^1  ((√(1−t^4 ))/((p^2  +1)t^4  +2p^2 t^2  +p^2 −1))dt  =A−B  let decompose F(t) =((t^2  +1)/((p^(2 ) +1)t^4  +2p^2 t^2  +p^2 −1))  =((x+1)/((p^2  +1)x^2  +2p^2 x +p^2 −1))=g(x)  with x=t^2   Δ^′  =p^4 −(p^4 −1) =1 ⇒x_1 =((−p^2  +1)/(p^2  +1)) =((1−p^2 )/(1+p^2 ))  x_2 =((−p^2  −1)/(p^2  +1)) =−1 ⇒g(x)=((x+1)/((p^2  +1)(x+1)(x−((1−p^2 )/(1+p^2 )))))  =(1/((p^2  +1)(x−((1−p^2 )/(1+p^2 ))))) =(1/((p^2  +1)(t^2 −((1−p^2 )/(1+p^2 )))))  if  p>1  we get  F(t) =(1/((p^2  +1)(t^2 +((p^2 −1)/(p^2  +1)))))  we do the changement  t=(√((p^2 −1)/(p^2 +1)))u ⇒2p∫_0 ^1  F(t)dt =((2p)/(p^2  +1)) ∫_0 ^(√((p^2 +1)/(p^2 −1)))    (1/(u^2  +1))×((p^2 +1)/(p^2 −1))du  =((2p)/(p^2 −1)) arctan(√((p^2 +1)/(p^2 −1)))  if 0<p<1 we get F(t)=(1/((p^2  +1)(t−a_p )(t+a_p )))  (a_p =(√((1−p^2 )/(1+p^2 ))))=(1/(2a_p (p^2  +1))){(1/(t−a_p ))−(1/(t+a_p ))} ⇒  2p ∫_0 ^1  F(t)dt =(p/(a_p (p^2  +1))) [ln∣((t−a_p )/(t+a_p ))∣]_0 ^1 =(p/(a_p (p^2  +1)))ln∣((1−a_p )/(1+a_p ))∣  ...be continued...

$${let}\:{take}\:{a}\:{try}\:\:\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{{p}+\sqrt{{cosx}}}\:\:{cha}\mathrm{7}{gement}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{p}+\sqrt{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}}×\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{p}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{p}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }}{{p}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\left(\mathrm{1}−{t}^{\mathrm{4}} \right)}{dt}\:=\mathrm{2}{p}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{{p}^{\mathrm{2}} \left({t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}\right)−\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }}{{p}^{\mathrm{2}} \left({t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}\right)−\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$=\mathrm{2}{p}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right){t}^{\mathrm{4}} \:+\mathrm{2}{p}^{\mathrm{2}} {t}^{\mathrm{2}} \:+{p}^{\mathrm{2}} \:−\mathrm{1}}{dt}\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right){t}^{\mathrm{4}} \:+\mathrm{2}{p}^{\mathrm{2}} {t}^{\mathrm{2}} \:+{p}^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$={A}−{B}\:\:{let}\:{decompose}\:{F}\left({t}\right)\:=\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{\left({p}^{\mathrm{2}\:} +\mathrm{1}\right){t}^{\mathrm{4}} \:+\mathrm{2}{p}^{\mathrm{2}} {t}^{\mathrm{2}} \:+{p}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{{x}+\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right){x}^{\mathrm{2}} \:+\mathrm{2}{p}^{\mathrm{2}} {x}\:+{p}^{\mathrm{2}} −\mathrm{1}}={g}\left({x}\right)\:\:{with}\:{x}={t}^{\mathrm{2}} \\ $$$$\Delta^{'} \:={p}^{\mathrm{4}} −\left({p}^{\mathrm{4}} −\mathrm{1}\right)\:=\mathrm{1}\:\Rightarrow{x}_{\mathrm{1}} =\frac{−{p}^{\mathrm{2}} \:+\mathrm{1}}{{p}^{\mathrm{2}} \:+\mathrm{1}}\:=\frac{\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{1}+{p}^{\mathrm{2}} } \\ $$$${x}_{\mathrm{2}} =\frac{−{p}^{\mathrm{2}} \:−\mathrm{1}}{{p}^{\mathrm{2}} \:+\mathrm{1}}\:=−\mathrm{1}\:\Rightarrow{g}\left({x}\right)=\frac{{x}+\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}−\frac{\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{1}+{p}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}−\frac{\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{1}+{p}^{\mathrm{2}} }\right)}\:=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\frac{\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{1}+{p}^{\mathrm{2}} }\right)} \\ $$$${if}\:\:{p}>\mathrm{1}\:\:{we}\:{get}\:\:{F}\left({t}\right)\:=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} +\frac{{p}^{\mathrm{2}} −\mathrm{1}}{{p}^{\mathrm{2}} \:+\mathrm{1}}\right)}\:\:{we}\:{do}\:{the}\:{changement} \\ $$$${t}=\sqrt{\frac{{p}^{\mathrm{2}} −\mathrm{1}}{{p}^{\mathrm{2}} +\mathrm{1}}}{u}\:\Rightarrow\mathrm{2}{p}\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({t}\right){dt}\:=\frac{\mathrm{2}{p}}{{p}^{\mathrm{2}} \:+\mathrm{1}}\:\int_{\mathrm{0}} ^{\sqrt{\frac{{p}^{\mathrm{2}} +\mathrm{1}}{{p}^{\mathrm{2}} −\mathrm{1}}}} \:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{1}}×\frac{{p}^{\mathrm{2}} +\mathrm{1}}{{p}^{\mathrm{2}} −\mathrm{1}}{du} \\ $$$$=\frac{\mathrm{2}{p}}{{p}^{\mathrm{2}} −\mathrm{1}}\:{arctan}\sqrt{\frac{{p}^{\mathrm{2}} +\mathrm{1}}{{p}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${if}\:\mathrm{0}<{p}<\mathrm{1}\:{we}\:{get}\:{F}\left({t}\right)=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}−{a}_{{p}} \right)\left({t}+{a}_{{p}} \right)} \\ $$$$\left({a}_{{p}} =\sqrt{\frac{\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{1}+{p}^{\mathrm{2}} }}\right)=\frac{\mathrm{1}}{\mathrm{2}{a}_{{p}} \left({p}^{\mathrm{2}} \:+\mathrm{1}\right)}\left\{\frac{\mathrm{1}}{{t}−{a}_{{p}} }−\frac{\mathrm{1}}{{t}+{a}_{{p}} }\right\}\:\Rightarrow \\ $$$$\mathrm{2}{p}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({t}\right){dt}\:=\frac{{p}}{{a}_{{p}} \left({p}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\left[{ln}\mid\frac{{t}−{a}_{{p}} }{{t}+{a}_{{p}} }\mid\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{{p}}{{a}_{{p}} \left({p}^{\mathrm{2}} \:+\mathrm{1}\right)}{ln}\mid\frac{\mathrm{1}−{a}_{{p}} }{\mathrm{1}+{a}_{{p}} }\mid \\ $$$$...{be}\:{continued}... \\ $$

Commented by TawaTawa last updated on 30/Jan/20

Thanks for your time sir. I appreciate.

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by mathmax by abdo last updated on 30/Jan/20

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Answered by Kamel Kamel last updated on 29/Jan/20

Abdomathmax dx=((2dt)/(1+t^2 )) not ((2dt)/(√(1+t^2 ))).  The closed form of this integral is  given with hypergeometric functions.

$$\mathrm{Abdomathmax}\:\mathrm{dx}=\frac{\mathrm{2dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{not}\:\frac{\mathrm{2dt}}{\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}. \\ $$$$\mathrm{The}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{with}\:\mathrm{hypergeometric}\:\mathrm{functions}. \\ $$

Answered by mind is power last updated on 30/Jan/20

Commented by TawaTawa last updated on 30/Jan/20

Wow,  God bless you sir. I appreciate.

$$\mathrm{Wow},\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by mind is power last updated on 30/Jan/20

thank you,y′re welcom withe pleasur

$${thank}\:{you},{y}'{re}\:{welcom}\:{withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com