Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79869 by Henri Boucatchou last updated on 28/Jan/20

For  witch  value  of  α  the  integral    I=∫_0 ^∞ ((1/(√(1+2x^2 )))−(α/(1+x)))dx  converge;    and  in  this  case  calculate  α

$${For}\:\:{witch}\:\:{value}\:\:{of}\:\:\alpha\:\:{the}\:\:{integral} \\ $$$$\:\:{I}=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\right){dx}\:\:{converge}; \\ $$$$\:\:{and}\:\:{in}\:\:{this}\:\:{case}\:\:{calculate}\:\:\alpha \\ $$

Commented by mathmax by abdo last updated on 29/Jan/20

let a>0  we have I =∫_0 ^a  ((1/(√(1+2x^2 )))−(α/(1+x)))dx +∫_a ^(+∞) ((1/(√(1+2x^2 )))−(α/(1+x)))dx  the gunction x→(1/(√(1+2x^2 )))−(α/(1+x)) is continue on [0,a] ⇒  integrable on[0,a] ∀α  now let look what happend on +∞!  we have  (1/(√(1+2x^2 )))−(α/(1+x)) =(1/(x(√2)((√((1/(2x^2 ))+1))))) −(α/(x(1+(1/x))))  =(1/(x(√2)))(1+(1/(2x^2 )))^(−(1/2))  −(α/(x(1+(1/x)))) ∼(1/(x(√2))){1−(1/(4x^2 ))}−(α/x)(1−(1/x))  ∼(1/x)((1/(√2))−α)−(1/(4(√2)x^3 )) +(α/x^2 )   so I converges ⇔(1/(√2))−α=0 ⇒α=(1/(√2))  if α≠(1/(√2)) this integral diverges!

$${let}\:{a}>\mathrm{0}\:\:{we}\:{have}\:{I}\:=\int_{\mathrm{0}} ^{{a}} \:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\right){dx}\:+\int_{{a}} ^{+\infty} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\right){dx} \\ $$$${the}\:{gunction}\:{x}\rightarrow\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\:{is}\:{continue}\:{on}\:\left[\mathrm{0},{a}\right]\:\Rightarrow \\ $$$${integrable}\:{on}\left[\mathrm{0},{a}\right]\:\forall\alpha\:\:{now}\:{let}\:{look}\:{what}\:{happend}\:{on}\:+\infty! \\ $$$${we}\:{have}\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\:=\frac{\mathrm{1}}{{x}\sqrt{\mathrm{2}}\left(\sqrt{\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+\mathrm{1}}\right)}\:−\frac{\alpha}{{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)} \\ $$$$=\frac{\mathrm{1}}{{x}\sqrt{\mathrm{2}}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:−\frac{\alpha}{{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)}\:\sim\frac{\mathrm{1}}{{x}\sqrt{\mathrm{2}}}\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} }\right\}−\frac{\alpha}{{x}}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\sim\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\alpha\right)−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}{x}^{\mathrm{3}} }\:+\frac{\alpha}{{x}^{\mathrm{2}} }\:\:\:{so}\:{I}\:{converges}\:\Leftrightarrow\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\alpha=\mathrm{0}\:\Rightarrow\alpha=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$${if}\:\alpha\neq\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{this}\:{integral}\:{diverges}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com