Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 79876 by mathocean1 last updated on 28/Jan/20

f is derivable in R.  1) Demonstrate that if f is pair , f ′ is odd(unpair).  1) Demonstrate that if f is unpair , f ′ is pair.    Please help me sirs

$${f}\:{is}\:{derivable}\:{in}\:\mathbb{R}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{if}\:{f}\:\mathrm{is}\:\mathrm{pair}\:,\:{f}\:'\:\mathrm{is}\:\mathrm{odd}\left(\mathrm{unpair}\right). \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{if}\:{f}\:{is}\:\mathrm{unpair}\:,\:{f}\:'\:\mathrm{is}\:\mathrm{pair}. \\ $$$$ \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sirs} \\ $$

Commented by MJS last updated on 29/Jan/20

if “pair” means f(−x)=f(x)  and “unpair” means f(−x)=−f(x)  then i.e.  y=cos x and y=x^2 ; y=x^4  are pair  y=sin x and y=x; y=x^3  are unpair  draw them and try to understand how the  slopes must look like

$$\mathrm{if}\:``\mathrm{pair}''\:\mathrm{means}\:{f}\left(−{x}\right)={f}\left({x}\right) \\ $$$$\mathrm{and}\:``\mathrm{unpair}''\:\mathrm{means}\:{f}\left(−{x}\right)=−{f}\left({x}\right) \\ $$$$\mathrm{then}\:\mathrm{i}.\mathrm{e}. \\ $$$${y}=\mathrm{cos}\:{x}\:\mathrm{and}\:{y}={x}^{\mathrm{2}} ;\:{y}={x}^{\mathrm{4}} \:\mathrm{are}\:\mathrm{pair} \\ $$$${y}=\mathrm{sin}\:{x}\:\mathrm{and}\:{y}={x};\:{y}={x}^{\mathrm{3}} \:\mathrm{are}\:\mathrm{unpair} \\ $$$$\mathrm{draw}\:\mathrm{them}\:\mathrm{and}\:\mathrm{try}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{how}\:\mathrm{the} \\ $$$$\mathrm{slopes}\:\mathrm{must}\:\mathrm{look}\:\mathrm{like} \\ $$

Answered by Henri Boucatchou last updated on 29/Jan/20

  f  is  derivable  for  all x_0 ∈R,  that′s   lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )  f  pair  ⇒  lim_(x−→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )    ⇒ f ′(−x_0 )=−f ′(x_0 )  e.i.  f ′  is  odd;  f  unpair  ⇒  lim_(x→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((−[f(x)−f(x_0 )])/(x−x_0 ))=−f ′(x_0 )    ⇒−f ′(−x_0 )=−f ′(x_0 )    ⇒  f ′(−x_0 )=f ′(x_0 )  e.i.  f ′  is  pair.

$$\:\:{f}\:\:{is}\:\:{derivable}\:\:{for}\:\:{all}\:{x}_{\mathrm{0}} \in\mathbb{R},\:\:{that}'{s} \\ $$$$\:\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }={f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$${f}\:\:{pair}\:\:\Rightarrow\:\:\underset{{x}−\rightarrow{x}_{\mathrm{0}} } {{lim}}−\frac{{f}\left(−{x}\right)−{f}\left(−{x}_{\mathrm{0}} \right)}{\left(−{x}\right)−\left(−{x}_{\mathrm{0}} \right)}=−{f}\:'\left(−{x}_{\mathrm{0}} \right)=\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }={f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow\:{f}\:'\left(−{x}_{\mathrm{0}} \right)=−{f}\:'\left({x}_{\mathrm{0}} \right)\:\:{e}.{i}.\:\:{f}\:'\:\:{is}\:\:{odd}; \\ $$$${f}\:\:{unpair}\:\:\Rightarrow\:\:\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}−\frac{{f}\left(−{x}\right)−{f}\left(−{x}_{\mathrm{0}} \right)}{\left(−{x}\right)−\left(−{x}_{\mathrm{0}} \right)}=−{f}\:'\left(−{x}_{\mathrm{0}} \right)=\underset{{x}\rightarrow{x}_{\mathrm{0}} } {{lim}}\frac{−\left[{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)\right]}{{x}−{x}_{\mathrm{0}} }=−{f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow−{f}\:'\left(−{x}_{\mathrm{0}} \right)=−{f}\:'\left({x}_{\mathrm{0}} \right) \\ $$$$\:\:\Rightarrow\:\:{f}\:'\left(−{x}_{\mathrm{0}} \right)={f}\:'\left({x}_{\mathrm{0}} \right)\:\:{e}.{i}.\:\:{f}\:'\:\:{is}\:\:{pair}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com