Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 79943 by TawaTawa last updated on 29/Jan/20

Commented by TawaTawa last updated on 29/Jan/20

Equilateral triangle not equilibrium triangle

$$\mathrm{Equilateral}\:\mathrm{triangle}\:\mathrm{not}\:\mathrm{equilibrium}\:\mathrm{triangle} \\ $$

Commented by TawaTawa last updated on 29/Jan/20

I cannot show it. the b part

$$\mathrm{I}\:\mathrm{cannot}\:\mathrm{show}\:\mathrm{it}.\:\mathrm{the}\:\mathrm{b}\:\mathrm{part} \\ $$

Commented by TawaTawa last updated on 29/Jan/20

Alright sir,  help me please.  God bless you sir.

$$\mathrm{Alright}\:\mathrm{sir},\:\:\mathrm{help}\:\mathrm{me}\:\mathrm{please}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 29/Jan/20

what′s your difficulty?

$${what}'{s}\:{your}\:{difficulty}? \\ $$

Commented by mr W last updated on 30/Jan/20

question has terribly some errors.  i answered the question in the way  how i think it should be. e.g. EB  can never be horizontal. but EA can  be horizontal.

$${question}\:{has}\:{terribly}\:{some}\:{errors}. \\ $$$${i}\:{answered}\:{the}\:{question}\:{in}\:{the}\:{way} \\ $$$${how}\:{i}\:{think}\:{it}\:{should}\:{be}.\:{e}.{g}.\:{EB} \\ $$$${can}\:{never}\:{be}\:{horizontal}.\:{but}\:{EA}\:{can} \\ $$$${be}\:{horizontal}. \\ $$

Answered by mr W last updated on 30/Jan/20

Commented by mr W last updated on 30/Jan/20

PART A    red shaded: cut off part  with weight G_2  and centroid at M_2   blue shaded: remaining part  with weight G_1  and centroid at M_1   black triangle: whole lamina  with weight G and centroid at M    AB=BC=CA=2a  OC=(√3)a  CM=(2/3)OC=((2(√3)a)/3)  G=area ΔABC=((2a)/2)×(√3)a=(√3)a^2   ED=DC=CE=2x  FC=(√3)x  CM_2 =(2/3)FC=((2(√3)x)/3)  G_2 =area ΔEDC=((2x)/2)×(√3)x=(√3)x^2   G_1 =G−G_2 =(√3)(a^2 −x^2 )  MM_2 =CM−CM_2 =((2(√3))/3)(a−x)  G_1 ×M_1 M=G_2 ×MM_2   ⇒M_1 M=(G_2 /G_1 )×MM_2 =(((√3)x^2 )/((√3)(a^2 −x^2 )))×((2(√3))/3)(a−x)  ⇒M_1 M=((2(√3)x^2 )/(3(a+x)))  M_1 F=M_1 M+MC−FC=((2(√3)x^2 )/(3(a+x)))+((2(√3)a)/3)−(√3)x  M_1 F=((2x^2 +2(a^2 +ax)−3(ax+x^2 ))/((√3)(a+x)))  M_1 F=((2a^2 −ax−x^2 )/((√3)(a+x)))  ⇒M_1 F=(((a−x)(2a+x))/((√3)(a+x)))

$${PART}\:{A} \\ $$$$ \\ $$$${red}\:{shaded}:\:{cut}\:{off}\:{part} \\ $$$${with}\:{weight}\:{G}_{\mathrm{2}} \:{and}\:{centroid}\:{at}\:{M}_{\mathrm{2}} \\ $$$${blue}\:{shaded}:\:{remaining}\:{part} \\ $$$${with}\:{weight}\:{G}_{\mathrm{1}} \:{and}\:{centroid}\:{at}\:{M}_{\mathrm{1}} \\ $$$${black}\:{triangle}:\:{whole}\:{lamina} \\ $$$${with}\:{weight}\:{G}\:{and}\:{centroid}\:{at}\:{M} \\ $$$$ \\ $$$${AB}={BC}={CA}=\mathrm{2}{a} \\ $$$${OC}=\sqrt{\mathrm{3}}{a} \\ $$$${CM}=\frac{\mathrm{2}}{\mathrm{3}}{OC}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{a}}{\mathrm{3}} \\ $$$${G}={area}\:\Delta{ABC}=\frac{\mathrm{2}{a}}{\mathrm{2}}×\sqrt{\mathrm{3}}{a}=\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \\ $$$${ED}={DC}={CE}=\mathrm{2}{x} \\ $$$${FC}=\sqrt{\mathrm{3}}{x} \\ $$$${CM}_{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}}{FC}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{x}}{\mathrm{3}} \\ $$$${G}_{\mathrm{2}} ={area}\:\Delta{EDC}=\frac{\mathrm{2}{x}}{\mathrm{2}}×\sqrt{\mathrm{3}}{x}=\sqrt{\mathrm{3}}{x}^{\mathrm{2}} \\ $$$${G}_{\mathrm{1}} ={G}−{G}_{\mathrm{2}} =\sqrt{\mathrm{3}}\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right) \\ $$$${MM}_{\mathrm{2}} ={CM}−{CM}_{\mathrm{2}} =\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\left({a}−{x}\right) \\ $$$${G}_{\mathrm{1}} ×{M}_{\mathrm{1}} {M}={G}_{\mathrm{2}} ×{MM}_{\mathrm{2}} \\ $$$$\Rightarrow{M}_{\mathrm{1}} {M}=\frac{{G}_{\mathrm{2}} }{{G}_{\mathrm{1}} }×{MM}_{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}{x}^{\mathrm{2}} }{\sqrt{\mathrm{3}}\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)}×\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\left({a}−{x}\right) \\ $$$$\Rightarrow{M}_{\mathrm{1}} {M}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{x}^{\mathrm{2}} }{\mathrm{3}\left({a}+{x}\right)} \\ $$$${M}_{\mathrm{1}} {F}={M}_{\mathrm{1}} {M}+{MC}−{FC}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{x}^{\mathrm{2}} }{\mathrm{3}\left({a}+{x}\right)}+\frac{\mathrm{2}\sqrt{\mathrm{3}}{a}}{\mathrm{3}}−\sqrt{\mathrm{3}}{x} \\ $$$${M}_{\mathrm{1}} {F}=\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}\left({a}^{\mathrm{2}} +{ax}\right)−\mathrm{3}\left({ax}+{x}^{\mathrm{2}} \right)}{\sqrt{\mathrm{3}}\left({a}+{x}\right)} \\ $$$${M}_{\mathrm{1}} {F}=\frac{\mathrm{2}{a}^{\mathrm{2}} −{ax}−{x}^{\mathrm{2}} }{\sqrt{\mathrm{3}}\left({a}+{x}\right)} \\ $$$$\Rightarrow{M}_{\mathrm{1}} {F}=\frac{\left({a}−{x}\right)\left(\mathrm{2}{a}+{x}\right)}{\sqrt{\mathrm{3}}\left({a}+{x}\right)} \\ $$

Commented by mr W last updated on 30/Jan/20

Commented by mr W last updated on 30/Jan/20

PART B    θ=120°−α  tan α=((M_1 F)/(EF))=(((a−x)(2a+x))/((√3)(a+x)x))  let′s make α=30°, then  tan α=(1/(√3))  (((a−x)(2a+x))/((√3)(a+x)x))=(1/(√3))  (a−x)(2a+x)=(a+x)x  x^2 +ax−a^2 =0  ⇒x=((((√5)−1)a)/2)≈0.618a (golden ratio!)  that means if x=((((√5)−1)a)/2), we will  get α=30° and θ=120−30=90°.  in this case, when the remaining  lamina is freely suspended at point  E, EM_1  will be vertical and EA will  be horizontal.

$${PART}\:{B} \\ $$$$ \\ $$$$\theta=\mathrm{120}°−\alpha \\ $$$$\mathrm{tan}\:\alpha=\frac{{M}_{\mathrm{1}} {F}}{{EF}}=\frac{\left({a}−{x}\right)\left(\mathrm{2}{a}+{x}\right)}{\sqrt{\mathrm{3}}\left({a}+{x}\right){x}} \\ $$$${let}'{s}\:{make}\:\alpha=\mathrm{30}°,\:{then} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\frac{\left({a}−{x}\right)\left(\mathrm{2}{a}+{x}\right)}{\sqrt{\mathrm{3}}\left({a}+{x}\right){x}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\left({a}−{x}\right)\left(\mathrm{2}{a}+{x}\right)=\left({a}+{x}\right){x} \\ $$$${x}^{\mathrm{2}} +{ax}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){a}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{618}{a}\:\left({golden}\:{ratio}!\right) \\ $$$${that}\:{means}\:{if}\:{x}=\frac{\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){a}}{\mathrm{2}},\:{we}\:{will} \\ $$$${get}\:\alpha=\mathrm{30}°\:{and}\:\theta=\mathrm{120}−\mathrm{30}=\mathrm{90}°. \\ $$$${in}\:{this}\:{case},\:{when}\:{the}\:{remaining} \\ $$$${lamina}\:{is}\:{freely}\:{suspended}\:{at}\:{point} \\ $$$${E},\:{EM}_{\mathrm{1}} \:{will}\:{be}\:{vertical}\:{and}\:{EA}\:{will} \\ $$$${be}\:{horizontal}. \\ $$

Commented by mr W last updated on 30/Jan/20

Commented by TawaTawa last updated on 30/Jan/20

Wow,  God bless you sir.  I will study it and understand.  Thanks for your time always.

$$\mathrm{Wow},\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{study}\:\mathrm{it}\:\mathrm{and}\:\mathrm{understand}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{always}. \\ $$

Commented by mr W last updated on 30/Jan/20

Extra task:  Prove without calculation that it  is impossible that EB is vertical  when ABDE is freely suspended  from E, regardless how large the cut  off part CDE is.

$${Extra}\:{task}: \\ $$$${Prove}\:{without}\:{calculation}\:{that}\:{it} \\ $$$${is}\:{impossible}\:{that}\:{EB}\:{is}\:{vertical} \\ $$$${when}\:{ABDE}\:{is}\:{freely}\:{suspended} \\ $$$${from}\:{E},\:{regardless}\:{how}\:{large}\:{the}\:{cut} \\ $$$${off}\:{part}\:{CDE}\:{is}. \\ $$

Commented by mr W last updated on 30/Jan/20

Commented by mr W last updated on 30/Jan/20

EXTRA TASK  OF=symmetry axis  S=midpoint of OF  Since the part left from S is larger  than the part right from S, the centroid  M_1  must lie on the left side of S.  On the other side, let N be the  intersection point from EB and OF,  since ED is smaller than AB, N must  lie on the right side of S.  that is to say, M_1  can never coincide  with N.  When ABDE is suspendet from point  E, EM_1  will be vertical. Since M_1   can never lie on the line EB, it means  that EB can never be vertical, when  ABDE is suspended on point E.

$${EXTRA}\:{TASK} \\ $$$${OF}={symmetry}\:{axis} \\ $$$${S}={midpoint}\:{of}\:{OF} \\ $$$${Since}\:{the}\:{part}\:{left}\:{from}\:{S}\:{is}\:{larger} \\ $$$${than}\:{the}\:{part}\:{right}\:{from}\:{S},\:{the}\:{centroid} \\ $$$${M}_{\mathrm{1}} \:{must}\:{lie}\:{on}\:{the}\:{left}\:{side}\:{of}\:{S}. \\ $$$${On}\:{the}\:{other}\:{side},\:{let}\:{N}\:{be}\:{the} \\ $$$${intersection}\:{point}\:{from}\:{EB}\:{and}\:{OF}, \\ $$$${since}\:{ED}\:{is}\:{smaller}\:{than}\:{AB},\:{N}\:{must} \\ $$$${lie}\:{on}\:{the}\:{right}\:{side}\:{of}\:{S}. \\ $$$${that}\:{is}\:{to}\:{say},\:{M}_{\mathrm{1}} \:{can}\:{never}\:{coincide} \\ $$$${with}\:{N}. \\ $$$${When}\:{ABDE}\:{is}\:{suspendet}\:{from}\:{point} \\ $$$${E},\:{EM}_{\mathrm{1}} \:{will}\:{be}\:{vertical}.\:{Since}\:{M}_{\mathrm{1}} \\ $$$${can}\:{never}\:{lie}\:{on}\:{the}\:{line}\:{EB},\:{it}\:{means} \\ $$$${that}\:{EB}\:{can}\:{never}\:{be}\:{vertical},\:{when} \\ $$$${ABDE}\:{is}\:{suspended}\:{on}\:{point}\:{E}. \\ $$

Commented by mr W last updated on 30/Jan/20

Commented by TawaTawa last updated on 30/Jan/20

I really appreciate your effort sir.  Am preparing for the exam.  God bless you more sir.  you helped me alot.

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}\:\mathrm{sir}. \\ $$$$\mathrm{Am}\:\mathrm{preparing}\:\mathrm{for}\:\mathrm{the}\:\mathrm{exam}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir}. \\ $$$$\mathrm{you}\:\mathrm{helped}\:\mathrm{me}\:\mathrm{alot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com