Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 79946 by mr W last updated on 29/Jan/20

Find   ∫_0 ^( n) [(x)^(1/3) ]dx=?   in terms of n. (n∈N)

Find0n[x3]dx=?intermsofn.(nN)

Answered by key of knowledge last updated on 29/Jan/20

⌊^3 (√n)⌋=a  ∫_m^3  ^( (m+1)^3 ) [^3 (√x^3 )]dx=m∫_m^3  ^((m+1)^3 ) dx=3m^3 +3m^2 +m  ∫_0 ^( n) [(x)^(1/3) ]dx=Σ_0 ^(a−1) (3m^3 +3m^2 +m)+∫_a^3  ^( n) [(√x^3 )]=   Σ_0 ^(a−1) (3m^3 +3m^2 +m)+a(n−a^3 )

3n=am3(m+1)3[3x3]dx=mm3(m+1)3dx=3m3+3m2+m0n[x3]dx=a10(3m3+3m2+m)+a3n[x3]=a10(3m3+3m2+m)+a(na3)

Commented by mr W last updated on 29/Jan/20

thanks alot sir!

thanksalotsir!

Commented by mr W last updated on 29/Jan/20

i think you meant ⌊(n)^(1/3) ⌋=a in the first  line, right?

ithinkyoumeantn3=ainthefirstline,right?

Commented by key of knowledge last updated on 29/Jan/20

yes.Mr W .thank

yes.MrW.thank

Answered by mr W last updated on 29/Jan/20

let h=⌊(n)^(1/3) ⌋  x=[0,1^3 ): [(x)^(1/3) ]=0 ⇒∫_0 ^1^3  [(x)^(1/3) ]dx=0×(1^3 −0)  x=[1^3 ,2^3 ): [(x)^(1/3) ]=1⇒∫_0 ^1^3  [(x)^(1/3) ]dx=1×(2^3 −1^3 )  x=[2^3 ,3^3 ): [(x)^(1/3) ]=2⇒∫_1^3  ^2^3  [(x)^(1/3) ]dx=2×(3^3 −2^3 )  x=[3^3 ,4^3 ): [(x)^(1/3) ]=3⇒∫_2^3  ^3^3  [(x)^(1/3) ]dx=3×(4^3 −3^3 )  ...  x=[(h−1)^3 ,h^3 ): [(x)^(1/3) ]=h−1⇒∫_((h−1)^3 ) ^h^3  [(x)^(1/3) ]dx=(h−1)×(h^3 −(h−1)^3 )  x=[h^3 ,n]: [(x)^(1/3) ]=h⇒∫_h^3  ^n [(x)^(1/3) ]dx=h×(n−h^3 )  ∫_0 ^( n) [(x)^(1/3) ]dx=Σ_(k=0) ^(h−1) ∫_k^3  ^((k+1)^3 ) [(x)^(1/3) ]dx+∫_h^3  ^n [(x)^(1/3) ]dx  =Σ_(k=0) ^(h−1) {k[(k+1)^3 −k^3 ]}+h(n−h^3 )  =Σ_(k=1) ^(h−1) (3k^3 +3k^2 +k)+h(n−h^3 )  =3(((h−1)^2 h^2 )/4)+3(((h−1)h(2h−1))/6)+(((h−1)h)/2)+h(n−h^3 )  =((h^2 (h−1)(3h+1)+4h(n−h^3 ))/4)  ⇒∫_0 ^( n) [(x)^(1/3) ]dx=nh−((h^2 (h+1)^2 )/4)  example n=100:  h=⌊((100))^(1/3) ⌋=4  ∫_0 ^( 100) [(x)^(1/3) ]dx=100×4−((4^2 ×5^2 )/4)=300

leth=n3x=[0,13):[x3]=0013[x3]dx=0×(130)x=[13,23):[x3]=1013[x3]dx=1×(2313)x=[23,33):[x3]=21323[x3]dx=2×(3323)x=[33,43):[x3]=32333[x3]dx=3×(4333)...x=[(h1)3,h3):[x3]=h1(h1)3h3[x3]dx=(h1)×(h3(h1)3)x=[h3,n]:[x3]=hh3n[x3]dx=h×(nh3)0n[x3]dx=h1k=0k3(k+1)3[x3]dx+h3n[x3]dx=h1k=0{k[(k+1)3k3]}+h(nh3)=h1k=1(3k3+3k2+k)+h(nh3)=3(h1)2h24+3(h1)h(2h1)6+(h1)h2+h(nh3)=h2(h1)(3h+1)+4h(nh3)40n[x3]dx=nhh2(h+1)24examplen=100:h=1003=40100[x3]dx=100×442×524=300

Terms of Service

Privacy Policy

Contact: info@tinkutara.com