Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 79966 by M±th+et£s last updated on 29/Jan/20

Commented by M±th+et£s last updated on 29/Jan/20

solve thd ODE

$${solve}\:{thd}\:{ODE} \\ $$

Answered by mr W last updated on 29/Jan/20

(dx/dy)=((y^2 +y^2 e^(((x/y))^2 ) +2x^2 ((x/y))^2 )/(2xye^(((x/y))^2 ) ))  (dx/dy)=((1+e^(((x/y))^2 ) +2((x/y))^4 )/(2((x/y))e^(((x/y))^2 ) ))  let u=(x/y), i.e. x=uy  (dx/dy)=u+y(du/dy)  u+y(du/dy)=((1+e^u^2  +2u^4 )/(2ue^u^2  ))  y(du/dy)=((1+e^u^2  +2u^4 −2u^2 e^u^2  )/(2ue^u^2  ))  ((2ue^u^2  )/(1+e^u^2  +2u^4 −2u^2 e^u^2  ))du=(dy/y)  (e^u^2  /(1+e^u^2  +2u^4 −2u^2 e^u^2  ))du^2 =(dy/y)  let t=u^2   (e^t /(1+e^t +2t^2 −2te^t ))dt=(dy/y)  ∫(e^t /(1+e^t +2t^2 −2te^t ))dt=∫(dy/y)  ∫(e^t /(1+e^t +2t^2 −2te^t ))dt=ln (cy)  .....  not integrable ...

$$\frac{{dx}}{{dy}}=\frac{{y}^{\mathrm{2}} +{y}^{\mathrm{2}} {e}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } +\mathrm{2}{x}^{\mathrm{2}} \left(\frac{{x}}{{y}}\right)^{\mathrm{2}} }{\mathrm{2}{xye}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } } \\ $$$$\frac{{dx}}{{dy}}=\frac{\mathrm{1}+{e}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } +\mathrm{2}\left(\frac{{x}}{{y}}\right)^{\mathrm{4}} }{\mathrm{2}\left(\frac{{x}}{{y}}\right){e}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } } \\ $$$${let}\:{u}=\frac{{x}}{{y}},\:{i}.{e}.\:{x}={uy} \\ $$$$\frac{{dx}}{{dy}}={u}+{y}\frac{{du}}{{dy}} \\ $$$${u}+{y}\frac{{du}}{{dy}}=\frac{\mathrm{1}+{e}^{{u}^{\mathrm{2}} } +\mathrm{2}{u}^{\mathrm{4}} }{\mathrm{2}{ue}^{{u}^{\mathrm{2}} } } \\ $$$${y}\frac{{du}}{{dy}}=\frac{\mathrm{1}+{e}^{{u}^{\mathrm{2}} } +\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} {e}^{{u}^{\mathrm{2}} } }{\mathrm{2}{ue}^{{u}^{\mathrm{2}} } } \\ $$$$\frac{\mathrm{2}{ue}^{{u}^{\mathrm{2}} } }{\mathrm{1}+{e}^{{u}^{\mathrm{2}} } +\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} {e}^{{u}^{\mathrm{2}} } }{du}=\frac{{dy}}{{y}} \\ $$$$\frac{{e}^{{u}^{\mathrm{2}} } }{\mathrm{1}+{e}^{{u}^{\mathrm{2}} } +\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} {e}^{{u}^{\mathrm{2}} } }{du}^{\mathrm{2}} =\frac{{dy}}{{y}} \\ $$$${let}\:{t}={u}^{\mathrm{2}} \\ $$$$\frac{{e}^{{t}} }{\mathrm{1}+{e}^{{t}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{te}^{{t}} }{dt}=\frac{{dy}}{{y}} \\ $$$$\int\frac{{e}^{{t}} }{\mathrm{1}+{e}^{{t}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{te}^{{t}} }{dt}=\int\frac{{dy}}{{y}} \\ $$$$\int\frac{{e}^{{t}} }{\mathrm{1}+{e}^{{t}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{te}^{{t}} }{dt}=\mathrm{ln}\:\left({cy}\right) \\ $$$$.....\:\:{not}\:{integrable}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com