Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 80057 by ajfour last updated on 30/Jan/20

Commented by ajfour last updated on 30/Jan/20

If released as shown in upper  diagram, after what time does  the upper sphere loose contact,  with the lower ones?

$${If}\:{released}\:{as}\:{shown}\:{in}\:{upper} \\ $$$${diagram},\:{after}\:{what}\:{time}\:{does} \\ $$$${the}\:{upper}\:{sphere}\:{loose}\:{contact}, \\ $$$${with}\:{the}\:{lower}\:{ones}? \\ $$

Commented by ajfour last updated on 30/Jan/20

(assume frictionless surfaces).

$$\left({assume}\:{frictionless}\:{surfaces}\right). \\ $$

Answered by mr W last updated on 30/Jan/20

Commented by mr W last updated on 04/Feb/20

R=radius of circles  y=2R sin θ  x=2R cos θ  let ω=(dθ/dt), α=(dω/dt)=ω(dω/dθ)  V, A=velocity and acceleration ↓  v, a=velocity and acceleration ← →    V=−(dy/dt)=−2R cos θ (dθ/dt)=−2R cos θ ω  v=(dx/dt)=−2R sin θ (dθ/dt)=−2R sin θ ω  (1/2)mV^2 +2×(1/2)mv^2 =mg((√3)R−2R sin θ)  2R(1+sin^2  θ)ω^2 =g((√3)−2 sin θ)  ⇒ω^2 =(g/(2R))×(((√3)−2 sin θ)/(1+sin^2  θ))  ⇒ω=−(√(g/(2R)))(√(((√3)−2 sin θ)/(1+sin^2  θ)))    A=(dV/dt)=2R(sin θ ω^2 −cos θ α)  a=(dv/dt)=2R(−cos θ ω^2 −sin θ α)    mg−2N sin θ=mA  mg−2N sin θ=2mR(sin θ ω^2 −cos θ α)   ...(i)    N cos θ=ma  N cos θ=2mR(−cos θ ω^2 −sin θ α)   ...(ii)    (i) cos θ+2×(ii) sin θ:  (g/(2R)) cos θ=−ω^2 sin θcos θ−(1+sin^2  θ)α  α=−((((g/(2R)) +ω^2 sin θ)cos θ)/((1+sin^2  θ)))  ⇒α=−(g/(2R))×(((1+(√3)sin θ−sin^2  θ)cos θ)/((1+sin^2  θ)^2 ))  put ω^2  and α into (ii):  ⇒(N/(mg))=((sin^3  θ+3 sin θ−(√3))/((1+sin^2  θ)^2 ))    for N=0 (loss of contact):  ⇒sin^3  θ+3 sin θ−(√3)=0  ⇒sin θ=((((√7)+(√3))/2))^(1/3) −(((√(7−(√3)))/2))^(1/3)   ⇒θ_1 =sin^(−1) (((((√7)+(√3))/2))^(1/3) −(((√(7−(√3)))/2))^(1/3) )  ⇒θ_1 ≈0.556506 rad (≈31.885421°)    ω=(dθ/dt)=−(√(g/(2R)))(√(((√3)−2 sin θ)/(1+sin^2  θ)))  ∫_0 ^( t) dt=−(√((2R)/g))∫_(π/3) ^( θ) (√((1+sin^2  θ)/((√3)−2 sin θ))) dθ  ⇒t(θ)=(√((2R)/g))∫_θ ^( (π/3)) (√((1+sin^2  θ)/((√3)−2 sin θ))) dθ  t_1 =t(θ_1 )=(√((2R)/g))∫_θ_1  ^( (π/3)) (√((1+sin^2  θ)/((√3)−2 sin θ))) dθ  ≈1.670696(√((2R)/g))    that means at time t_1 =1.670696(√((2R)/g))  and at θ_1 =31.885421° the contact gets lost.    V=(√(2Rg)) cos θ(√(((√3)−2 sin θ)/(1+sin^2  θ)))  at θ=θ_1 :  (V_1 /(√(2Rg)))=cos θ_1 (√(((√3)−2 sin θ_1 )/(1+sin^2  θ_1 )))≈0.617121  that means at the moment of loss of  contact the velocity downwards is  V_1 =0.617121 (√(2Rg)).

$${R}={radius}\:{of}\:{circles} \\ $$$${y}=\mathrm{2}{R}\:\mathrm{sin}\:\theta \\ $$$${x}=\mathrm{2}{R}\:\mathrm{cos}\:\theta \\ $$$${let}\:\omega=\frac{{d}\theta}{{dt}},\:\alpha=\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$${V},\:{A}={velocity}\:{and}\:{acceleration}\:\downarrow \\ $$$${v},\:{a}={velocity}\:{and}\:{acceleration}\:\leftarrow\:\rightarrow \\ $$$$ \\ $$$${V}=−\frac{{dy}}{{dt}}=−\mathrm{2}{R}\:\mathrm{cos}\:\theta\:\frac{{d}\theta}{{dt}}=−\mathrm{2}{R}\:\mathrm{cos}\:\theta\:\omega \\ $$$${v}=\frac{{dx}}{{dt}}=−\mathrm{2}{R}\:\mathrm{sin}\:\theta\:\frac{{d}\theta}{{dt}}=−\mathrm{2}{R}\:\mathrm{sin}\:\theta\:\omega \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mV}^{\mathrm{2}} +\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} ={mg}\left(\sqrt{\mathrm{3}}{R}−\mathrm{2}{R}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{2}{R}\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)\omega^{\mathrm{2}} ={g}\left(\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{{g}}{\mathrm{2}{R}}×\frac{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\Rightarrow\omega=−\sqrt{\frac{{g}}{\mathrm{2}{R}}}\sqrt{\frac{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$ \\ $$$${A}=\frac{{dV}}{{dt}}=\mathrm{2}{R}\left(\mathrm{sin}\:\theta\:\omega^{\mathrm{2}} −\mathrm{cos}\:\theta\:\alpha\right) \\ $$$${a}=\frac{{dv}}{{dt}}=\mathrm{2}{R}\left(−\mathrm{cos}\:\theta\:\omega^{\mathrm{2}} −\mathrm{sin}\:\theta\:\alpha\right) \\ $$$$ \\ $$$${mg}−\mathrm{2}{N}\:\mathrm{sin}\:\theta={mA} \\ $$$${mg}−\mathrm{2}{N}\:\mathrm{sin}\:\theta=\mathrm{2}{mR}\left(\mathrm{sin}\:\theta\:\omega^{\mathrm{2}} −\mathrm{cos}\:\theta\:\alpha\right)\:\:\:...\left({i}\right) \\ $$$$ \\ $$$${N}\:\mathrm{cos}\:\theta={ma} \\ $$$${N}\:\mathrm{cos}\:\theta=\mathrm{2}{mR}\left(−\mathrm{cos}\:\theta\:\omega^{\mathrm{2}} −\mathrm{sin}\:\theta\:\alpha\right)\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:\mathrm{cos}\:\theta+\mathrm{2}×\left({ii}\right)\:\mathrm{sin}\:\theta: \\ $$$$\frac{{g}}{\mathrm{2}{R}}\:\mathrm{cos}\:\theta=−\omega^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta−\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)\alpha \\ $$$$\alpha=−\frac{\left(\frac{{g}}{\mathrm{2}{R}}\:+\omega^{\mathrm{2}} \mathrm{sin}\:\theta\right)\mathrm{cos}\:\theta}{\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)} \\ $$$$\Rightarrow\alpha=−\frac{{g}}{\mathrm{2}{R}}×\frac{\left(\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{sin}\:\theta−\mathrm{sin}^{\mathrm{2}} \:\theta\right)\mathrm{cos}\:\theta}{\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${put}\:\omega^{\mathrm{2}} \:{and}\:\alpha\:{into}\:\left({ii}\right): \\ $$$$\Rightarrow\frac{{N}}{{mg}}=\frac{\mathrm{sin}^{\mathrm{3}} \:\theta+\mathrm{3}\:\mathrm{sin}\:\theta−\sqrt{\mathrm{3}}}{\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$$ \\ $$$${for}\:{N}=\mathrm{0}\:\left({loss}\:{of}\:{contact}\right): \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{3}} \:\theta+\mathrm{3}\:\mathrm{sin}\:\theta−\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7}−\sqrt{\mathrm{3}}}}{\mathrm{2}}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{sin}^{−\mathrm{1}} \left(\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7}−\sqrt{\mathrm{3}}}}{\mathrm{2}}}\right) \\ $$$$\Rightarrow\theta_{\mathrm{1}} \approx\mathrm{0}.\mathrm{556506}\:{rad}\:\left(\approx\mathrm{31}.\mathrm{885421}°\right) \\ $$$$ \\ $$$$\omega=\frac{{d}\theta}{{dt}}=−\sqrt{\frac{{g}}{\mathrm{2}{R}}}\sqrt{\frac{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\int_{\mathrm{0}} ^{\:{t}} {dt}=−\sqrt{\frac{\mathrm{2}{R}}{{g}}}\int_{\frac{\pi}{\mathrm{3}}} ^{\:\theta} \sqrt{\frac{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}}\:{d}\theta \\ $$$$\Rightarrow{t}\left(\theta\right)=\sqrt{\frac{\mathrm{2}{R}}{{g}}}\int_{\theta} ^{\:\frac{\pi}{\mathrm{3}}} \sqrt{\frac{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}}\:{d}\theta \\ $$$${t}_{\mathrm{1}} ={t}\left(\theta_{\mathrm{1}} \right)=\sqrt{\frac{\mathrm{2}{R}}{{g}}}\int_{\theta_{\mathrm{1}} } ^{\:\frac{\pi}{\mathrm{3}}} \sqrt{\frac{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}}\:{d}\theta \\ $$$$\approx\mathrm{1}.\mathrm{670696}\sqrt{\frac{\mathrm{2}{R}}{{g}}} \\ $$$$ \\ $$$${that}\:{means}\:{at}\:{time}\:{t}_{\mathrm{1}} =\mathrm{1}.\mathrm{670696}\sqrt{\frac{\mathrm{2}{R}}{{g}}} \\ $$$${and}\:{at}\:\theta_{\mathrm{1}} =\mathrm{31}.\mathrm{885421}°\:{the}\:{contact}\:{gets}\:{lost}. \\ $$$$ \\ $$$${V}=\sqrt{\mathrm{2}{Rg}}\:\mathrm{cos}\:\theta\sqrt{\frac{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$${at}\:\theta=\theta_{\mathrm{1}} : \\ $$$$\frac{{V}_{\mathrm{1}} }{\sqrt{\mathrm{2}{Rg}}}=\mathrm{cos}\:\theta_{\mathrm{1}} \sqrt{\frac{\sqrt{\mathrm{3}}−\mathrm{2}\:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} }}\approx\mathrm{0}.\mathrm{617121} \\ $$$${that}\:{means}\:{at}\:{the}\:{moment}\:{of}\:{loss}\:{of} \\ $$$${contact}\:{the}\:{velocity}\:{downwards}\:{is} \\ $$$${V}_{\mathrm{1}} =\mathrm{0}.\mathrm{617121}\:\sqrt{\mathrm{2}{Rg}}. \\ $$

Commented by mr W last updated on 31/Jan/20

Commented by ajfour last updated on 31/Jan/20

your method is straight and  clear, Sir, must be true, unless  there is something, that we  need to amend in our concepts..

$${your}\:{method}\:{is}\:{straight}\:{and} \\ $$$${clear},\:{Sir},\:{must}\:{be}\:{true},\:{unless} \\ $$$${there}\:{is}\:{something},\:{that}\:{we} \\ $$$${need}\:{to}\:{amend}\:{in}\:{our}\:{concepts}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com