Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80064 by Rio Michael last updated on 30/Jan/20

lim_(x→−∞)  [(√(1−xe^x  ))]

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} \:}\right] \\ $$

Commented by mathmax by abdo last updated on 30/Jan/20

no its a indeterminedform  its not correct

$${no}\:{its}\:{a}\:{indeterminedform}\:\:{its}\:{not}\:{correct} \\ $$

Commented by mr W last updated on 30/Jan/20

let t=−x  t→+∞ when x→−∞  lim_(x→−∞) (1−xe^x )=lim_(t→+∞) (1+(t/e^t ))  =1+lim_(t→+∞) ((t/e^t ))  =1+lim_(t→+∞) ((1/e^t ))  =1+0  =1  ⇒lim_(x→−∞)  [(√(1−xe^x  ))]=(√1)=1

$${let}\:{t}=−{x} \\ $$$${t}\rightarrow+\infty\:{when}\:{x}\rightarrow−\infty \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\mathrm{1}−{xe}^{{x}} \right)=\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{{t}}{{e}^{{t}} }\right) \\ $$$$=\mathrm{1}+\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{t}}{{e}^{{t}} }\right) \\ $$$$=\mathrm{1}+\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{e}^{{t}} }\right) \\ $$$$=\mathrm{1}+\mathrm{0} \\ $$$$=\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} \:}\right]=\sqrt{\mathrm{1}}=\mathrm{1} \\ $$

Commented by Rio Michael last updated on 30/Jan/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by Rio Michael last updated on 30/Jan/20

sir i solved it like this:  lim_(x→−∞)  [(√(1−xe^x ))] = (√(1−(−∞)e^(−∞) ))                                       = (√( 1+ ((+∞)/e^∞ ) )) = (√(1+0)) = 1

$$\mathrm{sir}\:\mathrm{i}\:\mathrm{solved}\:\mathrm{it}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} }\right]\:=\:\sqrt{\mathrm{1}−\left(−\infty\right){e}^{−\infty} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\sqrt{\:\mathrm{1}+\:\frac{+\infty}{{e}^{\infty} }\:}\:=\:\sqrt{\mathrm{1}+\mathrm{0}}\:=\:\mathrm{1} \\ $$$$ \\ $$

Commented by Rio Michael last updated on 30/Jan/20

you mean i must do the substitution t = −x?

$${you}\:{mean}\:{i}\:{must}\:{do}\:{the}\:{substitution}\:{t}\:=\:−{x}? \\ $$

Commented by mathmax by abdo last updated on 04/Feb/20

let f(x)=(√(1−xe^x ))  cha7gement  e^x =t give x=ln(t)  ⇒lim_(x→−∞) f(x)=lim_(t→0^+ )   (√(1−tlnt))=(√(1−o))=1

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}−{xe}^{{x}} }\:\:{cha}\mathrm{7}{gement}\:\:{e}^{{x}} ={t}\:{give}\:{x}={ln}\left({t}\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right)={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\sqrt{\mathrm{1}−{tlnt}}=\sqrt{\mathrm{1}−{o}}=\mathrm{1} \\ $$

Answered by Kamel Kamel last updated on 30/Jan/20

We have: ∀x⋘0, 0<−xe^x <1  So :(√(1−xe^x ))=1+α /α<1  ∴ [(√(1−xe^x ))]=1  ∴  lim_(x→−∞)  [(√(1−xe^x  ))]=1

$$\mathrm{We}\:\mathrm{have}:\:\forall\mathrm{x}\lll\mathrm{0},\:\mathrm{0}<−\mathrm{xe}^{\mathrm{x}} <\mathrm{1} \\ $$$$\mathrm{So}\::\sqrt{\mathrm{1}−\mathrm{xe}^{\mathrm{x}} }=\mathrm{1}+\alpha\:/\alpha<\mathrm{1} \\ $$$$\therefore\:\left[\sqrt{\mathrm{1}−\mathrm{xe}^{\mathrm{x}} }\right]=\mathrm{1} \\ $$$$\therefore\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} \:}\right]=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com