Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80084 by behi83417@gmail.com last updated on 30/Jan/20

  −1=(−1)^1 =(−1)^(2/2) =((−1)^2 )^(1/2) =(1)^(1/2) =  =(√1)=1    what do you think about this?

1=(1)1=(1)22=((1)2)12=(1)12==1=1whatdoyouthinkaboutthis?

Commented by key of knowledge last updated on 30/Jan/20

(−1)^(2/2) =((−1)^(1/2) )^2 ≠((−1)^2 )^(1/2)

(1)22=((1)12)2((1)2)12

Commented by behi83417@gmail.com last updated on 31/Jan/20

thanks alot sir′s.  perfect explanation.

thanksalotsirs.perfectexplanation.

Commented by MJS last updated on 31/Jan/20

we′ve got a definition:  C={z=e^(iθ) r∣−π<θ≤π; r∈R^+ }  we know that e^(iθ) =e^(i(θ+2πn))  with n∈Z but we  only use this for finding all possible solutions  of certain equations  we define  z^q =(e^(iθ) r)^q =e^(i(π−mod (π−qθ, 2π)) r^q  for q∈Q, R, C  with mod (x, y) ≥0 i.e. mod (−3, 7)=4       [there′s only one exception for z∈R^+  and         n∈Z: (−z)^(1/(2n+1)) =−(z^(1/(2n+1)) ) This is useful in         elementary mathematics, like 3d geometry         or solving polynomes of 3^(rd)  degree using         Cardano.]  ⇒ (z^q )^(1/q) ≠(z^(1/q) )^q  in many cases  ((−1)^2 )^(1/2) =(1)^(1/2) =1  ((−1)^(1/2) )^2 =(i)^2 =−1  ((3+4i)^4 )^(1/4) =4−3i  ((3+4i)^(1/4) )^4 =3+4i

wevegotadefinition:C={z=eiθrπ<θπ;rR+}weknowthateiθ=ei(θ+2πn)withnZbutweonlyusethisforfindingallpossiblesolutionsofcertainequationswedefinezq=(eiθr)q=ei(πmod(πqθ,2π)rqforqQ,R,Cwithmod(x,y)0i.e.mod(3,7)=4[theresonlyoneexceptionforzR+andnZ:(z)12n+1=(z12n+1)Thisisusefulinelementarymathematics,like3dgeometryorsolvingpolynomesof3rddegreeusingCardano.](zq)1q(z1q)qinmanycases((1)2)12=(1)12=1((1)12)2=(i)2=1((3+4i)4)14=43i((3+4i)14)4=3+4i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com