Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80116 by mr W last updated on 31/Jan/20

Find  S_m =Σ_(n=0) ^∞ (1/(Π_(k=1) ^m (n+k)))=?  (m≥2)

FindSm=n=01mk=1(n+k)=?(m2)

Commented by mr W last updated on 31/Jan/20

some results proved or guessed (?):  S_2 =1  S_3 =(1/4)  S_4 =(1/(18)) (?)  S_5 =(1/(96)) (?)  S_6 =(1/(600)) (?)  S_7 =(1/(4320)) (?)  .....  S_m =(1/(????? in terms of m))

someresultsprovedorguessed(?):S2=1S3=14S4=118(?)S5=196(?)S6=1600(?)S7=14320(?).....Sm=1?????intermsofm

Answered by Kamel Kamel last updated on 31/Jan/20

S_m =Σ_(n=0) ^(+∞) ((n!)/((m+n)!))=(1/(Γ(m)))Σ_(n=0) ^(+∞) ((Γ(n+1)Γ(m))/(Γ(m+n+1)))        =(1/(Γ(m)))Σ_(n=0) ^(+∞) ∫_0 ^1 (1−t)^(m−1) t^n dt=(1/(Γ(m)))∫_0 ^1 (1−t)^(m−2) dt   ∴ S_m =−(1/((m−1)Γ(m)))(1−t)^(m−1) ∣_0 ^1 =(1/((m−1)Γ(m)))            =(1/((m−1)(m−1)!))                                               KAMEL BENAICHA

Sm=+n=0n!(m+n)!=1Γ(m)+n=0Γ(n+1)Γ(m)Γ(m+n+1)=1Γ(m)+n=001(1t)m1tndt=1Γ(m)01(1t)m2dtSm=1(m1)Γ(m)(1t)m101=1(m1)Γ(m)=1(m1)(m1)!KAMELBENAICHA

Commented by mr W last updated on 31/Jan/20

it′s perfect sir! i didn′t expect that  there is such a simple and effective  way. thanks alot and congratulations!

itsperfectsir!ididntexpectthatthereissuchasimpleandeffectiveway.thanksalotandcongratulations!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com