All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 80175 by Rio Michael last updated on 31/Jan/20
∫01dxx2+x+1=?
Commented by mathmax by abdo last updated on 31/Jan/20
letI=∫01dxx2+x+1⇒I=∫01dx(x+12)2+34cha7gementx+12=32tanθgiveθ=arctan(2x+13)I=∫π6π31341+tan2θ×32(1+tan2θ)dθ=∫π6π31+tan2θdθ=∫π6π3dθcosθ=tan(θ2)=u∫2−31311−u21+u2×2du1+u2=∫2−313(11−u+11+u)du=[ln∣1+u1−u∣]2−313=ln∣1+131−13∣−ln∣3−3−1+3∣=ln∣3+1∣−ln∣3−1∣−ln∣3(3−1)3−1∣=ln(3+1)−ln(3−1)−ln(3)
Answered by ~blr237~ last updated on 31/Jan/20
LetnameditAusing1+x+x2=(x+12)2+34=34[(2x+13)2+1]A=∫01231[(2x+13)2+1dx=[argsh(2x+13)]01=argsh(3)−argsh(13)usingargshx=ln(x+1+x2)A=ln(2+3)−ln(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com