Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80199 by peter frank last updated on 31/Jan/20

Commented by mr W last updated on 08/Feb/20

all are clear if you have a look at  the graph of the functions.

$${all}\:{are}\:{clear}\:{if}\:{you}\:{have}\:{a}\:{look}\:{at} \\ $$$${the}\:{graph}\:{of}\:{the}\:{functions}. \\ $$

Answered by mr W last updated on 08/Feb/20

(a)  cosh x=((e^x +e^(−x) )/2)  sinh x=((e^x −e^(−x) )/2)  a cosh x+b sinh x=0  (a/2)(e^x +e^(−x) )+(b/2)(e^x −e^(−x) )=0  (a+b)e^x +(a−b)e^(−x) =0  e^(2x) =((b−a)/(b+a))=(((b/a)−1)/((b/a)+1))  with ∣b∣>∣a∣:  (b/a)>1 or (b/a)<−1    with (b/a)>1:    (b/a)−1>0 and (b/a)+1>0  ⇒(((b/a)−1)/((b/a)+1))>0  with (b/a)<−1:   (b/a)−1<0 and (b/a)+1<0  ⇒ (((b/a)−1)/((b/a)+1))>0  that means if ∣b∣>∣a∣,  e^(2x) =((b−a)/(b+a))=(((b/a)−1)/((b/a)+1))>0  it has one and only one root:  x=(1/2)ln (((b−a)/(b+a)))

$$\left({a}\right) \\ $$$$\mathrm{cosh}\:{x}=\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}} \\ $$$$\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}} \\ $$$${a}\:\mathrm{cosh}\:{x}+{b}\:\mathrm{sinh}\:{x}=\mathrm{0} \\ $$$$\frac{{a}}{\mathrm{2}}\left({e}^{{x}} +{e}^{−{x}} \right)+\frac{{b}}{\mathrm{2}}\left({e}^{{x}} −{e}^{−{x}} \right)=\mathrm{0} \\ $$$$\left({a}+{b}\right){e}^{{x}} +\left({a}−{b}\right){e}^{−{x}} =\mathrm{0} \\ $$$${e}^{\mathrm{2}{x}} =\frac{{b}−{a}}{{b}+{a}}=\frac{\frac{{b}}{{a}}−\mathrm{1}}{\frac{{b}}{{a}}+\mathrm{1}} \\ $$$${with}\:\mid{b}\mid>\mid{a}\mid: \\ $$$$\frac{{b}}{{a}}>\mathrm{1}\:{or}\:\frac{{b}}{{a}}<−\mathrm{1} \\ $$$$ \\ $$$${with}\:\frac{{b}}{{a}}>\mathrm{1}:\:\: \\ $$$$\frac{{b}}{{a}}−\mathrm{1}>\mathrm{0}\:{and}\:\frac{{b}}{{a}}+\mathrm{1}>\mathrm{0} \\ $$$$\Rightarrow\frac{\frac{{b}}{{a}}−\mathrm{1}}{\frac{{b}}{{a}}+\mathrm{1}}>\mathrm{0} \\ $$$${with}\:\frac{{b}}{{a}}<−\mathrm{1}:\: \\ $$$$\frac{{b}}{{a}}−\mathrm{1}<\mathrm{0}\:{and}\:\frac{{b}}{{a}}+\mathrm{1}<\mathrm{0} \\ $$$$\Rightarrow\:\frac{\frac{{b}}{{a}}−\mathrm{1}}{\frac{{b}}{{a}}+\mathrm{1}}>\mathrm{0} \\ $$$${that}\:{means}\:{if}\:\mid{b}\mid>\mid{a}\mid, \\ $$$${e}^{\mathrm{2}{x}} =\frac{{b}−{a}}{{b}+{a}}=\frac{\frac{{b}}{{a}}−\mathrm{1}}{\frac{{b}}{{a}}+\mathrm{1}}>\mathrm{0} \\ $$$${it}\:{has}\:{one}\:{and}\:{only}\:{one}\:{root}: \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\frac{{b}−{a}}{{b}+{a}}\right) \\ $$

Answered by mr W last updated on 08/Feb/20

(b)  (i):  cosh x=((e^x +e^(−x) )/2)≥((2(√(e^x e^(−x) )))/2)=(2/2)=1  (ii):  if x≥0:  sinh x=((e^x −e^(−x) )/2)≤((e^x +e^(−x) )/2)=cosh x  ⇒∣sinh x∣≤cosh x  if x≤0:  sinh x=((e^x −e^(−x) )/2)≥((−e^x −e^(−x) )/2)=−cosh x  ⇒∣sinh x∣≤cosh x

$$\left({b}\right) \\ $$$$\left({i}\right): \\ $$$$\mathrm{cosh}\:{x}=\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}\geqslant\frac{\mathrm{2}\sqrt{{e}^{{x}} {e}^{−{x}} }}{\mathrm{2}}=\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1} \\ $$$$\left({ii}\right): \\ $$$${if}\:{x}\geqslant\mathrm{0}: \\ $$$$\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}}\leqslant\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}=\mathrm{cosh}\:{x} \\ $$$$\Rightarrow\mid\mathrm{sinh}\:{x}\mid\leqslant\mathrm{cosh}\:{x} \\ $$$${if}\:{x}\leqslant\mathrm{0}: \\ $$$$\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}}\geqslant\frac{−{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}}=−\mathrm{cosh}\:{x} \\ $$$$\Rightarrow\mid\mathrm{sinh}\:{x}\mid\leqslant\mathrm{cosh}\:{x} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com