Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80209 by peter frank last updated on 01/Feb/20

Commented by mathmax by abdo last updated on 01/Feb/20

z+(1/z) =−1 ⇒z^2  +1=−z ⇒z^2  +z+1=0  Δ=1−4=−3 ⇒z_1 =((−1+i(√3))/2)=e^((i2π)/3)   and z_2 =((−1−i(√3))/2)=e^(−((i2π)/3))   z=z_1  ⇒z^5  +(1/z^5 ) =e^((i10π)/3)  +e^(−((i10π)/3))  =2cos(((10π)/3))=2cos(4π−((2π)/3))  =2cos(((2π)/3))=2×(−(1/2))=−1  z=z_2  we get the same value because z_2 =conj(z_1 )  for z^(11)  +(1/z^(11) )  z=z_1 =⇒z^(11)  +(1/z^(11) ) =e^((i22π)/3)  +e^(−((i22π)/3))  =2cos(((22π)/3))  =2cos(8π−((2π)/3)) =2cos(((2π)/3))=−1  z=z_2  we get the same value

z+1z=1z2+1=zz2+z+1=0Δ=14=3z1=1+i32=ei2π3andz2=1i32=ei2π3z=z1z5+1z5=ei10π3+ei10π3=2cos(10π3)=2cos(4π2π3)=2cos(2π3)=2×(12)=1z=z2wegetthesamevaluebecausez2=conj(z1)forz11+1z11z=z1=⇒z11+1z11=ei22π3+ei22π3=2cos(22π3)=2cos(8π2π3)=2cos(2π3)=1z=z2wegetthesamevalue

Answered by som(math1967) last updated on 01/Feb/20

(z+(1/z))^2 =1⇒z^2 +(1/z^2 )=1−2=−1  again (z+(1/z))^3 =−1  z^3 +(1/z^3 ) +3(z+(1/z))=−1  z^3 +(1/z^3 )=−1+3=2  ∴(z^2 +(1/z^2 ))(z^3 +(1/z^3 ))=(−1)(2)=−2  z^5 +(1/z^5 ) +z+(1/z)=−2  ∴z^5 +(1/z^5 )=−2+1=−1 (proved)  Again (z^3 +(1/z^3 ))^2 =4  z^6 +(1/z^6 )=4−2=2  ∴(z^5 +(1/z^5 ))(z^6 +(1/z^6 ))=(−1)(2)   z^(11) +(1/z^(11) ) +z+(1/z)=−2  ∴z^(11) +(1/z^(11) )=−2+1=−1 ans

(z+1z)2=1z2+1z2=12=1again(z+1z)3=1z3+1z3+3(z+1z)=1z3+1z3=1+3=2(z2+1z2)(z3+1z3)=(1)(2)=2z5+1z5+z+1z=2z5+1z5=2+1=1(proved)Again(z3+1z3)2=4z6+1z6=42=2(z5+1z5)(z6+1z6)=(1)(2)z11+1z11+z+1z=2z11+1z11=2+1=1ans

Answered by mr W last updated on 01/Feb/20

z+(1/z)=−1  z^2 +z+1=0  z=((−1±i(√3))/2)=−{cos (±(π/3))+sin (±(π/3)) i}=−e^(±(π/3)i)   z^n +(1/z^n )=(−1)^n [e^(±((nπ)/3)i) +e^(∓((nπ)/3)i) ]  =2(−1)^n cos (±((nπ)/3))  =2(−1)^n cos (((nπ)/3))  ⇒z^n +(1/z^n )=2(−1)^n cos (((nπ)/3))  n=5:  z^5 +(1/z^5 )=2(−1)^5 cos (((5π)/3))=−2×(1/2)=−1  n=11:  z^(11) +(1/z^(11) )=2(−1)^(11) cos (((11π)/3))=−2×(1/2)=−1  n=3:  z^3 +(1/z^3 )=2(−1)^3 cos (((3π)/3))=−2×(−1)=2  n=12:  z^(12) +(1/z^(12) )=2(−1)^(12) cos (((12π)/3))=2×1=2

z+1z=1z2+z+1=0z=1±i32={cos(±π3)+sin(±π3)i}=e±π3izn+1zn=(1)n[e±nπ3i+enπ3i]=2(1)ncos(±nπ3)=2(1)ncos(nπ3)zn+1zn=2(1)ncos(nπ3)n=5:z5+1z5=2(1)5cos(5π3)=2×12=1n=11:z11+1z11=2(1)11cos(11π3)=2×12=1n=3:z3+1z3=2(1)3cos(3π3)=2×(1)=2n=12:z12+1z12=2(1)12cos(12π3)=2×1=2

Commented by jagoll last updated on 01/Feb/20

if x+(1/x)= −2   that x^6  +(1/x^6 ) = 2(−2)^(6 ) ×cos (((6π)/3))       = 128. that right sir

ifx+1x=2thatx6+1x6=2(2)6×cos(6π3)=128.thatrightsir

Commented by mr W last updated on 01/Feb/20

that′s not correct sir!

thatsnotcorrectsir!

Commented by peter frank last updated on 01/Feb/20

thank you all

thankyouall

Commented by mr W last updated on 01/Feb/20

if x+(1/x)= −2   ⇒x=−1  ⇒x^3 +(1/x^3 )=−2  ⇒x^6 +(1/x^6 )=2

ifx+1x=2x=1x3+1x3=2x6+1x6=2

Commented by jagoll last updated on 01/Feb/20

special means only for form   x+(1/x)=−1

specialmeansonlyforformx+1x=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com