Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 80222 by mr W last updated on 01/Feb/20

Commented by mr W last updated on 01/Feb/20

A round steel plate with radius R has  a round hole with radius r as shown.  Was is the maximal area of the ellipse  which can be cut off from the plate?

AroundsteelplatewithradiusRhasaroundholewithradiusrasshown.Wasisthemaximalareaoftheellipsewhichcanbecutofffromtheplate?

Commented by behi83417@gmail.com last updated on 01/Feb/20

dear master!please see my commenet on  Q#80142.thank you.

dearmaster!pleaseseemycommenetonYou can't use 'macro parameter character #' in math mode

Answered by mr W last updated on 02/Feb/20

Commented by mr W last updated on 02/Feb/20

parameters of ellipse: a, b  center of ellipse: C(0,c)  b−c=R−2r ⇒c=b+2r−R    eqn. of big circle:  x^2 +y^2 =R^2   eqn. of ellipse:  (x^2 /a^2 )+(((y−c)^2 )/b^2 )=1    intersection from circle and ellipse:  ((R^2 −y^2 )/a^2 )+(((y−c)^2 )/b^2 )=1  b^2 (R^2 −y^2 )+a^2 (y−c)^2 =a^2 b^2   (a^2 −b^2 )y^2 −2ca^2 y+a^2 c^2 −a^2 b^2 +R^2 b^2 =0  due to tangency Δ=0:  c^2 a^4 −(a^2 −b^2 )(a^2 c^2 −a^2 b^2 +R^2 b^2 )=0  a^2 (a^2 −b^2 −R^2 +c^2 )+R^2 b^2 =0  a^4 −4r(R−r)a^2 −2(R−2r)a^2 b+R^2 b^2 =0  ⇒b=(((R−2r)a^2 +2a(√(r(R−r)(R^2 −a^2 ))))/R^2 )  let P=ab  a^6 −4r(R−r)a^4 −2(R−2r)a^3 P+R^2 P^2 =0  6a^5 −16r(R−r)a^3 −2(R−2r)(3a^2 P+a^3 (dP/da))+2R^2 P(dP/da)=0  for maximum ellipse, (dP/da)=0  3a^2 −8r(R−r)=3(R−2r)b  3a^2 −2R^2 =((3(R−2r))/(2r(R−r)))a(√(r(R−r)(R^2 −a^2 )))  [9+((9(R−2r)^2 )/(4r(R−r)))]a^4 −[12+((9(R−2r)^2 )/(4r(R−r)))]R^2 a^2 +4R^4 =0  with μ=((9(R−2r)^2 )/(4r(R−r)))  ⇒(9+μ)((a/R))^4 −(12+μ)((a/R))^2 +4=0  ⇒(a/R)=(√((12+μ±(√(μ(8+μ))))/(2(9+μ))))  (“+” if R>2r, “−” if R<2r)

parametersofellipse:a,bcenterofellipse:C(0,c)bc=R2rc=b+2rReqn.ofbigcircle:x2+y2=R2eqn.ofellipse:x2a2+(yc)2b2=1intersectionfromcircleandellipse:R2y2a2+(yc)2b2=1b2(R2y2)+a2(yc)2=a2b2(a2b2)y22ca2y+a2c2a2b2+R2b2=0duetotangencyΔ=0:c2a4(a2b2)(a2c2a2b2+R2b2)=0a2(a2b2R2+c2)+R2b2=0a44r(Rr)a22(R2r)a2b+R2b2=0b=(R2r)a2+2ar(Rr)(R2a2)R2letP=aba64r(Rr)a42(R2r)a3P+R2P2=06a516r(Rr)a32(R2r)(3a2P+a3dPda)+2R2PdPda=0formaximumellipse,dPda=03a28r(Rr)=3(R2r)b3a22R2=3(R2r)2r(Rr)ar(Rr)(R2a2)[9+9(R2r)24r(Rr)]a4[12+9(R2r)24r(Rr)]R2a2+4R4=0withμ=9(R2r)24r(Rr)(9+μ)(aR)4(12+μ)(aR)2+4=0aR=12+μ±μ(8+μ)2(9+μ)(+ifR>2r,ifR<2r)

Commented by mr W last updated on 02/Feb/20

Commented by mr W last updated on 02/Feb/20

Commented by mr W last updated on 02/Feb/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com