Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80227 by jagoll last updated on 01/Feb/20

how to prove  ∫_0 ^1  x^n  (1−x)^(m )  dx = ((m! ×n!)/((m+n)!))  via Gamma function

$${how}\:{to}\:{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{x}^{{n}} \:\left(\mathrm{1}−{x}\right)^{{m}\:} \:{dx}\:=\:\frac{{m}!\:×{n}!}{\left({m}+{n}\right)!} \\ $$$${via}\:{Gamma}\:{function} \\ $$

Commented by john santu last updated on 01/Feb/20

Beta function

$${Beta}\:{function} \\ $$

Commented by Tony Lin last updated on 01/Feb/20

∫_0 ^1 x^n (1−x)^m dx  =B(n+1, m+1)  =((Γ(n+1)Γ(m+1))/(Γ(n+m+2)))  =((m!n!)/((m+n+1)!))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{{m}} {dx} \\ $$$$={B}\left({n}+\mathrm{1},\:{m}+\mathrm{1}\right) \\ $$$$=\frac{\Gamma\left({n}+\mathrm{1}\right)\Gamma\left({m}+\mathrm{1}\right)}{\Gamma\left({n}+{m}+\mathrm{2}\right)} \\ $$$$=\frac{{m}!{n}!}{\left({m}+{n}+\mathrm{1}\right)!} \\ $$

Commented by mathmax by abdo last updated on 01/Feb/20

let A_(n,m) =∫_0 ^1 x^n (1−x)^m  dx  by psrts u^′ =x^n  and v=(1−x)^m   A_(n,m) =[(1/(n+1))x^(n+1) (1−x)^m ]_0 ^1 −∫_0 ^1 (x^(n+1) /(n+1))(−m)(1−x)^(m−1)  dx  =(m/(n+1)) A_(n+1,m−1) =((m(m−1))/((n+1)(n+2))) A_(n+2,m−2) =  =((m(m−1)(m−2)....(m−k+1))/((n+1)(n+2)...(n+k))) A_(n+k,m−k)   k=m ⇒A_(n,m) =((m!)/((n+1)(n+2)...(n+m))) A_(n+m,0)   A_(n+m,0) =∫_0 ^1  x^(n+m) dx =(1/(n+m+1)) ⇒A_(n,m) =((m!)/((n+1)(n+2)....(n+m+1)))  =((m!×n!)/((m+n+1)!))

$${let}\:{A}_{{n},{m}} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{{m}} \:{dx}\:\:{by}\:{psrts}\:{u}^{'} ={x}^{{n}} \:{and}\:{v}=\left(\mathrm{1}−{x}\right)^{{m}} \\ $$$${A}_{{n},{m}} =\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{m}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\left(−{m}\right)\left(\mathrm{1}−{x}\right)^{{m}−\mathrm{1}} \:{dx} \\ $$$$=\frac{{m}}{{n}+\mathrm{1}}\:{A}_{{n}+\mathrm{1},{m}−\mathrm{1}} =\frac{{m}\left({m}−\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:{A}_{{n}+\mathrm{2},{m}−\mathrm{2}} = \\ $$$$=\frac{{m}\left({m}−\mathrm{1}\right)\left({m}−\mathrm{2}\right)....\left({m}−{k}+\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{k}\right)}\:{A}_{{n}+{k},{m}−{k}} \\ $$$${k}={m}\:\Rightarrow{A}_{{n},{m}} =\frac{{m}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{m}\right)}\:{A}_{{n}+{m},\mathrm{0}} \\ $$$${A}_{{n}+{m},\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}+{m}} {dx}\:=\frac{\mathrm{1}}{{n}+{m}+\mathrm{1}}\:\Rightarrow{A}_{{n},{m}} =\frac{{m}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)....\left({n}+{m}+\mathrm{1}\right)} \\ $$$$=\frac{{m}!×{n}!}{\left({m}+{n}+\mathrm{1}\right)!} \\ $$

Commented by mathmax by abdo last updated on 01/Feb/20

error in the Question...

$${error}\:{in}\:{the}\:{Question}... \\ $$

Commented by mind is power last updated on 03/Feb/20

nice Sir

$${nice}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com