Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 80230 by M±th+et£s last updated on 01/Feb/20

Answered by mind is power last updated on 03/Feb/20

let f(z)=((πcot(πz))/(1+z^4 )),Main idee use Residus Th  and evaluate Integrales in Two ways  pols of f are   n∈Z∪{e^(i(((1+2k)/4)}π) ,k∈{0,1,2,3}}  Res(f,n)=(1/(1+n^4 ))  Res(f,e^(i(((1+2k)/4))π) )=(π/(4e^(i3(((1+2k)/4))π) ))cot(πe^(i(((1+2k)/4))π) )=g(k)  ∫_C_R  f(z)dz=0  C_R =Re^(iθ) ,θ∈[0,2π]  cause∣∫_C_R  f(z)∣dz≤2πR.Max∣f(z)∣  since ∣cot(z)∣≤M  ⇒Max(∣f(z)∣)≤((πM)/(R^4 −1))  ⇒∣∫_C_R  f(z)dz∣≤((2πMR)/(R^4 −1))→0  as R→∞  Res th⇒∫_C_R  f(z)dz=2iπΣ_(z∈C_R ) Res(f,z),R→∞ ⇒  ∫_C_R  f(z)dz=2iπΣ_(n∈Z) (1/(1+n^4 ))+2iπΣ_(k=0) ^3 ((πcot(πe^(i(((1+2k)/4))π) ))/4)e^(−i3(((1+2k)/4))π) =0..1  ⇒Σ_(n∈Z) (1/(n^4 +1))=−Σ_(k=0) ^3 g(k)  g(3)=g(1)^−   g(2)=g(0)^�   ⇒Σ_(k=0) ^3 g(k)=2Re{g(0)+g(1)}  g(1)=g(0)^− ⇒Σ_(k=0) ^3 g(k)=4Re{g(0)}  ⇒1⇔  Σ_(n∈Z) (1/(1+n^4 ))=−4Re{(π/4)cot(πe^(i(π/4)) )}e^((−3iπ)/4)   =−πRe{cot((π/(√2))+i(π/(√2)))e^(−((3iπ)/4)) }  =((π(√2))/2)Re{((cos((π/(√2)))ch((π/(√2)))−isin((π/(√2)))sh((π/(√2))))/(sin((π/(√2)))ch((π/(√2)))+icos((π/(√2)))sh((π/(√2)))))(1+i)}  ⇔  multiply by   (sin((π/(√2)))ch((π/(√2)))−icos((π/(√2)))sh((π/(√2))))  =((π(√2))/2){((((sin(π(√2)))/2)−i((sh(π(√2)))/2))/(sin^2 ((π/(√2)))+sh^2 ((π/(√2)))))(1+i)}  =((π(√2))/2){((sin(π(√2))−ish(π(√2)))/(ch(π(√2))−cos(π(√2))))(1+i)}  =((π(√2))/2)  ((sin(π(√2))+sh(π(√2)))/(ch(π(√2))−cos(π(√2))))=Σ_(n∈Z) (1/(1+n^4 ))=2Σ_(n≥1) (1/(n^4 +1))+1  ⇒Σ_(n≥1) (1/(1+n^4 ))=(π/(2(√2)))  ((sin(π(√2))+sh(π(√2)))/(ch(π(√2))−cos(π(√2))))−(1/2)

letf(z)=πcot(πz)1+z4,MainideeuseResidusThandevaluateIntegralesinTwowayspolsoffarenZ{ei(1+2k4}π,k{0,1,2,3}}Res(f,n)=11+n4Res(f,ei(1+2k4)π)=π4ei3(1+2k4)πcot(πei(1+2k4)π)=g(k)CRf(z)dz=0CR=Reiθ,θ[0,2π]causeCRf(z)dz2πR.Maxf(z)sincecot(z)∣⩽MMax(f(z))πMR41⇒∣CRf(z)dz∣⩽2πMRR410asRResthCRf(z)dz=2iπzCRRes(f,z),RCRf(z)dz=2iπnZ11+n4+2iπ3k=0πcot(πei(1+2k4)π)4ei3(1+2k4)π=0..1nZ1n4+1=3k=0g(k)Missing \left or extra \rightMissing \left or extra \right3k=0g(k)=2Re{g(0)+g(1)}Missing \left or extra \right1nZ11+n4=4Re{π4cot(πeiπ4)}e3iπ4=πRe{cot(π2+iπ2)e3iπ4}=π22Re{cos(π2)ch(π2)isin(π2)sh(π2)sin(π2)ch(π2)+icos(π2)sh(π2)(1+i)}multiplyby(sin(π2)ch(π2)icos(π2)sh(π2))=π22{sin(π2)2ish(π2)2sin2(π2)+sh2(π2)(1+i)}=π22{sin(π2)ish(π2)ch(π2)cos(π2)(1+i)}=π22sin(π2)+sh(π2)ch(π2)cos(π2)=nZ11+n4=2n11n4+1+1n111+n4=π22sin(π2)+sh(π2)ch(π2)cos(π2)12

Commented by M±th+et£s last updated on 03/Feb/20

god bless you sir . thank you

godblessyousir.thankyou

Commented by mind is power last updated on 03/Feb/20

Withe pleasur Sir

WithepleasurSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com