All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 80230 by M±th+et£s last updated on 01/Feb/20
Answered by mind is power last updated on 03/Feb/20
letf(z)=πcot(πz)1+z4,MainideeuseResidusThandevaluateIntegralesinTwowayspolsoffaren∈Z∪{ei(1+2k4}π,k∈{0,1,2,3}}Res(f,n)=11+n4Res(f,ei(1+2k4)π)=π4ei3(1+2k4)πcot(πei(1+2k4)π)=g(k)∫CRf(z)dz=0CR=Reiθ,θ∈[0,2π]cause∣∫CRf(z)∣dz⩽2πR.Max∣f(z)∣since∣cot(z)∣⩽M⇒Max(∣f(z)∣)⩽πMR4−1⇒∣∫CRf(z)dz∣⩽2πMRR4−1→0asR→∞Resth⇒∫CRf(z)dz=2iπ∑z∈CRRes(f,z),R→∞⇒∫CRf(z)dz=2iπ∑n∈Z11+n4+2iπ∑3k=0πcot(πei(1+2k4)π)4e−i3(1+2k4)π=0..1⇒∑n∈Z1n4+1=−∑3k=0g(k)Missing \left or extra \rightMissing \left or extra \rightMissing \left or extra \rightMissing \left or extra \right⇒∑3k=0g(k)=2Re{g(0)+g(1)}Missing \left or extra \rightMissing \left or extra \right⇒1⇔∑n∈Z11+n4=−4Re{π4cot(πeiπ4)}e−3iπ4=−πRe{cot(π2+iπ2)e−3iπ4}=π22Re{cos(π2)ch(π2)−isin(π2)sh(π2)sin(π2)ch(π2)+icos(π2)sh(π2)(1+i)}⇔multiplyby(sin(π2)ch(π2)−icos(π2)sh(π2))=π22{sin(π2)2−ish(π2)2sin2(π2)+sh2(π2)(1+i)}=π22{sin(π2)−ish(π2)ch(π2)−cos(π2)(1+i)}=π22sin(π2)+sh(π2)ch(π2)−cos(π2)=∑n∈Z11+n4=2∑n⩾11n4+1+1⇒∑n⩾111+n4=π22sin(π2)+sh(π2)ch(π2)−cos(π2)−12
Commented by M±th+et£s last updated on 03/Feb/20
godblessyousir.thankyou
Commented by mind is power last updated on 03/Feb/20
WithepleasurSir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com