Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80312 by TawaTawa last updated on 02/Feb/20

Commented by mr W last updated on 02/Feb/20

what is {...} here ?

$${what}\:{is}\:\left\{...\right\}\:{here}\:? \\ $$

Commented by TawaTawa last updated on 02/Feb/20

(((x − 1)/(x + 1))) sir

$$\left(\frac{\mathrm{x}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\right)\:\mathrm{sir} \\ $$

Commented by mr W last updated on 02/Feb/20

whether {x}=(x) or {x}=x−[x], have  you ever tried to solve it by yourself?

$${whether}\:\left\{{x}\right\}=\left({x}\right)\:{or}\:\left\{{x}\right\}={x}−\left[{x}\right],\:{have} \\ $$$${you}\:{ever}\:{tried}\:{to}\:{solve}\:{it}\:{by}\:{yourself}? \\ $$

Commented by TawaTawa last updated on 02/Feb/20

I did it like normal bracket. So i thought i could confirm the  answers. But now it is different definition.  I cannot solve that one.

$$\mathrm{I}\:\mathrm{did}\:\mathrm{it}\:\mathrm{like}\:\mathrm{normal}\:\mathrm{bracket}.\:\mathrm{So}\:\mathrm{i}\:\mathrm{thought}\:\mathrm{i}\:\mathrm{could}\:\mathrm{confirm}\:\mathrm{the} \\ $$$$\mathrm{answers}.\:\mathrm{But}\:\mathrm{now}\:\mathrm{it}\:\mathrm{is}\:\mathrm{different}\:\mathrm{definition}. \\ $$$$\mathrm{I}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{that}\:\mathrm{one}. \\ $$

Commented by mr W last updated on 02/Feb/20

with {((x − 1)/(x + 1))}=(((x − 1)/(x + 1))) the question  makes not much sense. i think it  means fraction part, i.e.  {x}=x−[x]

$${with}\:\left\{\frac{\mathrm{x}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\right\}=\left(\frac{\mathrm{x}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\right)\:{the}\:{question} \\ $$$${makes}\:{not}\:{much}\:{sense}.\:{i}\:{think}\:{it} \\ $$$${means}\:{fraction}\:{part},\:{i}.{e}. \\ $$$$\left\{{x}\right\}={x}−\left[{x}\right] \\ $$

Commented by TawaTawa last updated on 02/Feb/20

Maybe  sir.  I just guess sir.  Since  {  }  has meaning.  Help me sir.

$$\mathrm{Maybe}\:\:\mathrm{sir}.\:\:\mathrm{I}\:\mathrm{just}\:\mathrm{guess}\:\mathrm{sir}. \\ $$$$\mathrm{Since}\:\:\left\{\:\:\right\}\:\:\mathrm{has}\:\mathrm{meaning}.\:\:\mathrm{Help}\:\mathrm{me}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 02/Feb/20

Sir, it means the fractional part.

$$\mathrm{Sir},\:\mathrm{it}\:\mathrm{means}\:\mathrm{the}\:\mathrm{fractional}\:\mathrm{part}. \\ $$

Commented by john santu last updated on 02/Feb/20

{((x−1)/(x+1))}= ((x−1)/(x+1))−[((x−1)/(x+1))]=((x−1)/(x+1))−[1−(2/(x+1))]  =((x−1)/(x+1))−1= ((x−1−x−1)/(x+1))=((−2)/(x+1))  ∗ Ω= ∫ (((−2)/(x+1))).((xdx)/(1−x)) =   = ∫ ((  2xdx)/((x^2 −1))) = ∫ ((d(x^2 −1))/(x^2 −1))  Ω= ln(x^2 −1)+c

$$\left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}=\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\left[\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right]=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\left[\mathrm{1}−\frac{\mathrm{2}}{{x}+\mathrm{1}}\right] \\ $$$$=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\mathrm{1}=\:\frac{{x}−\mathrm{1}−{x}−\mathrm{1}}{{x}+\mathrm{1}}=\frac{−\mathrm{2}}{{x}+\mathrm{1}} \\ $$$$\ast\:\Omega=\:\int\:\left(\frac{−\mathrm{2}}{{x}+\mathrm{1}}\right).\frac{{xdx}}{\mathrm{1}−{x}}\:=\: \\ $$$$=\:\int\:\frac{\:\:\mathrm{2}{xdx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\:=\:\int\:\frac{{d}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Omega=\:{ln}\left({x}^{\mathrm{2}} −\mathrm{1}\right)+{c} \\ $$$$ \\ $$

Commented by TawaTawa last updated on 02/Feb/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by john santu last updated on 02/Feb/20

my ans is right?

$${my}\:{ans}\:{is}\:{right}? \\ $$

Commented by TawaTawa last updated on 02/Feb/20

I don′t know sir.  Sir  mrW  can confirm.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{sir}.\:\:\mathrm{Sir}\:\:\mathrm{mrW}\:\:\mathrm{can}\:\mathrm{confirm}. \\ $$

Commented by john santu last updated on 02/Feb/20

ok miss. thank you. god bless   you

$${ok}\:{miss}.\:{thank}\:{you}.\:{god}\:{bless}\: \\ $$$${you} \\ $$

Commented by behi83417@gmail.com last updated on 02/Feb/20

Ω=∫  ((−2xdx)/(x^2 −1))=−ln∣x^2 −1∣+const.

$$\Omega=\int\:\:\frac{−\mathrm{2}\boldsymbol{\mathrm{x}}\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}=−\mathrm{ln}\mid\mathrm{x}^{\mathrm{2}} −\mathrm{1}\mid+\mathrm{const}. \\ $$

Commented by mathmax by abdo last updated on 02/Feb/20

if {((x−1)/(x+1))} means (((x−1)/(x+1))) ⇒Ω=∫_0 ^1 ((x−1)/(x+1))×((xdx)/(1−x))  =−∫_0 ^1  ((xdx)/(x+1)) =−∫_0 ^1  ((x+1−1)/(x+1))dx =−1 +∫_0 ^1  (dx/(x+1)) =−1+ln(2)  if {((x−1)/(x+1))} means ((x−1)/(x+1))−[((x−1)/(x+1))] changement x=(1/t) give  Ω=−∫_1 ^(+∞) {(((1/t)−1)/((1/t)+1))}×(1/(t(1−(1/t))))(−(dt/t^2 ))  =∫_1 ^(+∞) {((1−t)/(1+t))}(dt/(t^2 (t−1))) =∫_1 ^(+∞) {((1−t)/(1+t))−[((1−t)/(1+t))])(dt/(t^2 (t−1)))  =−∫_1 ^(+∞)  (dt/(t^2 (t+1))) −∫_1 ^(+∞) [((1−t)/(1+t))](dt/(t^2 (t−1))) let decompose   f(t)=(1/(t^2 (t+1))) ⇒f(t)=(a/t) +(b/t^2 ) +(c/(t+1))  b=t^2 f(t)∣_(t=0) =1  and c=(t+1)f(t)∣_(t=−1) =1 ⇒  f(t)=(a/t)+(1/(t+1)) +(1/t^2 )  f(1)=(1/2) =a+(1/2) +1  ⇒a=−1 ⇒f(t)=−(1/t)+(1/(t+1))+(1/t^2 ) ⇒  ∫_1 ^(+∞)  f(t)dt =[−ln∣t∣+ln∣t+1∣−(1/t)]_1 ^(+∞) =[ln∣((t+1)/t)∣−(1/t)]_1 ^(+∞)   =−ln(2)+1 also  ∫_1 ^(+∞)  [((1−t)/(1+t))](dt/(t^2 (t−1))) =∫_1 ^(+∞) [−((t−1)/(t+1))](dt/(t^2 (t−1)))  =∫_1 ^(+∞) [−((t+1−2)/(t+1))](dt/(t^2 (t−1))) =∫_1 ^(+∞) [−1+(2/(t+1))](dt/(t^2 (t−1)))  =−∫_1 ^(+∞) (dt/(t^2 (t−1))) +∫_1 ^(+∞)  [(2/(t+1))](dt/(t^2 (t−1)))  ∫_1 ^(+∞)  (dt/(t^2 (t−1))) =_(t−1=u)   ∫_0 ^(+∞)  (du/(u(u+1)^(2 ) ))  this integral is divergent..!  also ∫_1 ^(+∞) [(2/(t+1))](dt/(t^2 (t−1))) =_(t+1=u)   ∫_2 ^(+∞) [(2/u)](du/((u−1)^2 (u−2)))  for u>2 ⇒0<(1/u)<(1/2) ⇒0<(2/u)<1 ⇒[(2/u)]=0  any way Ω diverges...

$${if}\:\left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}\:{means}\:\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)\:\Rightarrow\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}×\frac{{xdx}}{\mathrm{1}−{x}} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xdx}}{{x}+\mathrm{1}}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}+\mathrm{1}−\mathrm{1}}{{x}+\mathrm{1}}{dx}\:=−\mathrm{1}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{x}+\mathrm{1}}\:=−\mathrm{1}+{ln}\left(\mathrm{2}\right) \\ $$$${if}\:\left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}\:{means}\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\left[\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right]\:{changement}\:{x}=\frac{\mathrm{1}}{{t}}\:{give} \\ $$$$\Omega=−\int_{\mathrm{1}} ^{+\infty} \left\{\frac{\frac{\mathrm{1}}{{t}}−\mathrm{1}}{\frac{\mathrm{1}}{{t}}+\mathrm{1}}\right\}×\frac{\mathrm{1}}{{t}\left(\mathrm{1}−\frac{\mathrm{1}}{{t}}\right)}\left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right) \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \left\{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\right\}\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=\int_{\mathrm{1}} ^{+\infty} \left\{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}−\left[\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\right]\right)\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)} \\ $$$$=−\int_{\mathrm{1}} ^{+\infty} \:\frac{{dt}}{{t}^{\mathrm{2}} \left({t}+\mathrm{1}\right)}\:−\int_{\mathrm{1}} ^{+\infty} \left[\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:{let}\:{decompose}\: \\ $$$${f}\left({t}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{2}} \left({t}+\mathrm{1}\right)}\:\Rightarrow{f}\left({t}\right)=\frac{{a}}{{t}}\:+\frac{{b}}{{t}^{\mathrm{2}} }\:+\frac{{c}}{{t}+\mathrm{1}} \\ $$$${b}={t}^{\mathrm{2}} {f}\left({t}\right)\mid_{{t}=\mathrm{0}} =\mathrm{1}\:\:{and}\:{c}=\left({t}+\mathrm{1}\right){f}\left({t}\right)\mid_{{t}=−\mathrm{1}} =\mathrm{1}\:\Rightarrow \\ $$$${f}\left({t}\right)=\frac{{a}}{{t}}+\frac{\mathrm{1}}{{t}+\mathrm{1}}\:+\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:={a}+\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{1}\:\:\Rightarrow{a}=−\mathrm{1}\:\Rightarrow{f}\left({t}\right)=−\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{t}+\mathrm{1}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:{f}\left({t}\right){dt}\:=\left[−{ln}\mid{t}\mid+{ln}\mid{t}+\mathrm{1}\mid−\frac{\mathrm{1}}{{t}}\right]_{\mathrm{1}} ^{+\infty} =\left[{ln}\mid\frac{{t}+\mathrm{1}}{{t}}\mid−\frac{\mathrm{1}}{{t}}\right]_{\mathrm{1}} ^{+\infty} \\ $$$$=−{ln}\left(\mathrm{2}\right)+\mathrm{1}\:{also} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\left[\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=\int_{\mathrm{1}} ^{+\infty} \left[−\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)} \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \left[−\frac{{t}+\mathrm{1}−\mathrm{2}}{{t}+\mathrm{1}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=\int_{\mathrm{1}} ^{+\infty} \left[−\mathrm{1}+\frac{\mathrm{2}}{{t}+\mathrm{1}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)} \\ $$$$=−\int_{\mathrm{1}} ^{+\infty} \frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:+\int_{\mathrm{1}} ^{+\infty} \:\left[\frac{\mathrm{2}}{{t}+\mathrm{1}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=_{{t}−\mathrm{1}={u}} \:\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{du}}{{u}\left({u}+\mathrm{1}\right)^{\mathrm{2}\:} }\:\:{this}\:{integral}\:{is}\:{divergent}..! \\ $$$${also}\:\int_{\mathrm{1}} ^{+\infty} \left[\frac{\mathrm{2}}{{t}+\mathrm{1}}\right]\frac{{dt}}{{t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)}\:=_{{t}+\mathrm{1}={u}} \:\:\int_{\mathrm{2}} ^{+\infty} \left[\frac{\mathrm{2}}{{u}}\right]\frac{{du}}{\left({u}−\mathrm{1}\right)^{\mathrm{2}} \left({u}−\mathrm{2}\right)} \\ $$$${for}\:{u}>\mathrm{2}\:\Rightarrow\mathrm{0}<\frac{\mathrm{1}}{{u}}<\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{0}<\frac{\mathrm{2}}{{u}}<\mathrm{1}\:\Rightarrow\left[\frac{\mathrm{2}}{{u}}\right]=\mathrm{0}\:\:{any}\:{way}\:\Omega\:{diverges}... \\ $$$$ \\ $$

Commented by TawaTawa last updated on 02/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 02/Feb/20

I appreciate

$$\mathrm{I}\:\mathrm{appreciate} \\ $$

Commented by mathmax by abdo last updated on 04/Feb/20

you are welcome .

$${you}\:{are}\:{welcome}\:. \\ $$

Answered by mr W last updated on 02/Feb/20

{x}=x−[x]  ((x−1)/(x+1))=1−(2/(x+1))  for 0≤x≤1:  −1≤((x−1)/(x+1))≤0  concerning [x] for x<0 there are two  different ways for the definition:  way 1: [x]=⌊x⌋, i.e. [−0.5]=−1  way 2: [x]=⌈x⌉, i.e. [−0.5]=0    if we take definition way 1:  since −1≤((x−1)/(x+1))≤0,    {((x−1)/(x+1))}=((x−1)/(x+1))−(−1)=((2x)/(x+1))  ∫_0 ^( 1) {((x−1)/(x+1))}((xdx)/(1−x))  =∫_0 ^( 1) ((2x)/(x−1))×((xdx)/(1−x))  =−∫_0 ^( 1) ((2x^2 )/((x−1)^2 ))dx  =−2∫_0 ^( 1) (((x−1+1)^2 )/((x−1)^2 ))d(x−1)  =−2∫_(−1) ^( 0) (((u+1)^2 )/u^2 )du  =−2∫_(−1) ^( 0) (1+(2/u)+(1/u^2 ))du  =−2[u+2ln u−(1/u)]_(−1) ^0   =∞    if we take definition way 2:  since −1≤((x−1)/(x+1))≤0,    {((x−1)/(x+1))}=((x−1)/(x+1))−0=((x−1)/(x+1))  ∫_0 ^( 1) {((x−1)/(x+1))}((xdx)/(1−x))  =∫_0 ^( 1) ((x−1)/(x+1))×((xdx)/(1−x))  =−∫_0 ^( 1) (x/(x+1))dx  =−∫_0 ^( 1) (1−(1/(x+1)))dx  =−[x−ln (x+1)]_0 ^1   =ln 2−1

$$\left\{{x}\right\}={x}−\left[{x}\right] \\ $$$$\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}=\mathrm{1}−\frac{\mathrm{2}}{{x}+\mathrm{1}} \\ $$$${for}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}: \\ $$$$−\mathrm{1}\leqslant\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\leqslant\mathrm{0} \\ $$$${concerning}\:\left[{x}\right]\:{for}\:{x}<\mathrm{0}\:{there}\:{are}\:{two} \\ $$$${different}\:{ways}\:{for}\:{the}\:{definition}: \\ $$$${way}\:\mathrm{1}:\:\left[{x}\right]=\lfloor{x}\rfloor,\:{i}.{e}.\:\left[−\mathrm{0}.\mathrm{5}\right]=−\mathrm{1} \\ $$$${way}\:\mathrm{2}:\:\left[{x}\right]=\lceil{x}\rceil,\:{i}.{e}.\:\left[−\mathrm{0}.\mathrm{5}\right]=\mathrm{0} \\ $$$$ \\ $$$${if}\:{we}\:{take}\:{definition}\:{way}\:\mathrm{1}: \\ $$$${since}\:−\mathrm{1}\leqslant\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\leqslant\mathrm{0},\: \\ $$$$\:\left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\left(−\mathrm{1}\right)=\frac{\mathrm{2}{x}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}\frac{{xdx}}{\mathrm{1}−{x}} \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{2}{x}}{{x}−\mathrm{1}}×\frac{{xdx}}{\mathrm{1}−{x}} \\ $$$$=−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({x}−\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{d}\left({x}−\mathrm{1}\right) \\ $$$$=−\mathrm{2}\int_{−\mathrm{1}} ^{\:\mathrm{0}} \frac{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }{du} \\ $$$$=−\mathrm{2}\int_{−\mathrm{1}} ^{\:\mathrm{0}} \left(\mathrm{1}+\frac{\mathrm{2}}{{u}}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }\right){du} \\ $$$$=−\mathrm{2}\left[{u}+\mathrm{2ln}\:{u}−\frac{\mathrm{1}}{{u}}\right]_{−\mathrm{1}} ^{\mathrm{0}} \\ $$$$=\infty \\ $$$$ \\ $$$${if}\:{we}\:{take}\:{definition}\:{way}\:\mathrm{2}: \\ $$$${since}\:−\mathrm{1}\leqslant\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\leqslant\mathrm{0},\: \\ $$$$\:\left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}−\mathrm{0}=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right\}\frac{{xdx}}{\mathrm{1}−{x}} \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}×\frac{{xdx}}{\mathrm{1}−{x}} \\ $$$$=−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}}{{x}+\mathrm{1}}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx} \\ $$$$=−\left[{x}−\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\mathrm{ln}\:\mathrm{2}−\mathrm{1} \\ $$

Commented by TawaTawa last updated on 02/Feb/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 02/Feb/20

I appreciate

$$\mathrm{I}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com