Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 8032 by Nayon last updated on 28/Sep/16

find the real root:  99x^3 +297x^2 +594x−7867=0

$${find}\:{the}\:{real}\:{root}: \\ $$$$\mathrm{99}{x}^{\mathrm{3}} +\mathrm{297}{x}^{\mathrm{2}} +\mathrm{594}{x}−\mathrm{7867}=\mathrm{0} \\ $$

Answered by prakash jain last updated on 28/Sep/16

x=y−1  for solving cubic ax^3 +bx^2 +cx+d=0first step  is to put x=y−(b/(3a)) (to remove quadratic term)  99(y−1)^3 +297(y−1)^2 +594(y−1)−7867=  99(y^3 −3y^2 +3y−1)+297(y^2 −2y+1)               +594y−594−7867=0  99y^3 +297y−99−2×297y+297             +594y−8461=0  99y^3 +297y−8263=0  99y^3 +297y=8263  y^3 +3y=((8263)/(99))  A solution of equation y^3 +Ay=B  is s−t where s and t satisfy  3st=A   s^3 −t^3 =B [∵(s−t)^3 +3st(s−t)=s^3 −t^3 ]  3st=3⇒st=1  s^3 −t^3 =((8263)/(99))  (1/t^3 )−t^3 =((8263)/(99))  t^3 =u  1−u^2 =((8263)/(99))u  u^2 +((8263)/(99))u−1=0  t^3 =u=((−((8263)/(99))±(√((((8263)/(99)))^2 +4)))/2)  =(((√(68316373))−8263)/(198)) (taking only +ve root)  s^3 −t^3 =((8263)/(99))⇒s^3 =((8263)/(99))+(((√(68316373))−8293)/(198))  =((8263+(√(68316373)))/(198))  y=s−t=(((8263+(√(68316373)))/(198)))^(1/3) −(((−8263+(√(68316373)))/(198)))^(1/3)   =4.3704−0.2288=4.1416  x=y−1≈3.1416

$${x}={y}−\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{solving}\:\mathrm{cubic}\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0first}\:\mathrm{step} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{put}\:{x}={y}−\frac{{b}}{\mathrm{3}{a}}\:\left({to}\:{remove}\:{quadratic}\:{term}\right) \\ $$$$\mathrm{99}\left({y}−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{297}\left({y}−\mathrm{1}\overset{\mathrm{2}} {\right)}+\mathrm{594}\left({y}−\mathrm{1}\right)−\mathrm{7867}= \\ $$$$\mathrm{99}\left({y}^{\mathrm{3}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{3}{y}−\mathrm{1}\right)+\mathrm{297}\left({y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{594}{y}−\mathrm{594}−\mathrm{7867}=\mathrm{0} \\ $$$$\mathrm{99}{y}^{\mathrm{3}} +\mathrm{297}{y}−\mathrm{99}−\mathrm{2}×\mathrm{297}{y}+\mathrm{297} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\mathrm{594}{y}−\mathrm{8461}=\mathrm{0} \\ $$$$\mathrm{99}{y}^{\mathrm{3}} +\mathrm{297}{y}−\mathrm{8263}=\mathrm{0} \\ $$$$\mathrm{99}{y}^{\mathrm{3}} +\mathrm{297}{y}=\mathrm{8263} \\ $$$${y}^{\mathrm{3}} +\mathrm{3}{y}=\frac{\mathrm{8263}}{\mathrm{99}} \\ $$$$\mathrm{A}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation}\:{y}^{\mathrm{3}} +{Ay}={B} \\ $$$$\mathrm{is}\:{s}−{t}\:{where}\:{s}\:{and}\:{t}\:{satisfy} \\ $$$$\mathrm{3}{st}={A}\: \\ $$$${s}^{\mathrm{3}} −{t}^{\mathrm{3}} ={B}\:\left[\because\left({s}−{t}\right)^{\mathrm{3}} +\mathrm{3}{st}\left({s}−{t}\right)={s}^{\mathrm{3}} −{t}^{\mathrm{3}} \right] \\ $$$$\mathrm{3}{st}=\mathrm{3}\Rightarrow{st}=\mathrm{1} \\ $$$${s}^{\mathrm{3}} −{t}^{\mathrm{3}} =\frac{\mathrm{8263}}{\mathrm{99}} \\ $$$$\frac{\mathrm{1}}{{t}^{\mathrm{3}} }−{t}^{\mathrm{3}} =\frac{\mathrm{8263}}{\mathrm{99}} \\ $$$${t}^{\mathrm{3}} ={u} \\ $$$$\mathrm{1}−{u}^{\mathrm{2}} =\frac{\mathrm{8263}}{\mathrm{99}}{u} \\ $$$${u}^{\mathrm{2}} +\frac{\mathrm{8263}}{\mathrm{99}}{u}−\mathrm{1}=\mathrm{0} \\ $$$${t}^{\mathrm{3}} ={u}=\frac{−\frac{\mathrm{8263}}{\mathrm{99}}\pm\sqrt{\left(\frac{\mathrm{8263}}{\mathrm{99}}\right)^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{68316373}}−\mathrm{8263}}{\mathrm{198}}\:\left(\mathrm{taking}\:\mathrm{only}\:+\mathrm{ve}\:\mathrm{root}\right) \\ $$$${s}^{\mathrm{3}} −{t}^{\mathrm{3}} =\frac{\mathrm{8263}}{\mathrm{99}}\Rightarrow{s}^{\mathrm{3}} =\frac{\mathrm{8263}}{\mathrm{99}}+\frac{\sqrt{\mathrm{68316373}}−\mathrm{8293}}{\mathrm{198}} \\ $$$$=\frac{\mathrm{8263}+\sqrt{\mathrm{68316373}}}{\mathrm{198}} \\ $$$${y}={s}−{t}=\left(\frac{\mathrm{8263}+\sqrt{\mathrm{68316373}}}{\mathrm{198}}\right)^{\mathrm{1}/\mathrm{3}} −\left(\frac{−\mathrm{8263}+\sqrt{\mathrm{68316373}}}{\mathrm{198}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$=\mathrm{4}.\mathrm{3704}−\mathrm{0}.\mathrm{2288}=\mathrm{4}.\mathrm{1416} \\ $$$${x}={y}−\mathrm{1}\approx\mathrm{3}.\mathrm{1416} \\ $$

Commented by prakash jain last updated on 28/Sep/16

Is the equation derived from some  approximate value of π?

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{derived}\:\mathrm{from}\:\mathrm{some} \\ $$$$\mathrm{approximate}\:\mathrm{value}\:\mathrm{of}\:\pi? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com