Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80343 by jagoll last updated on 02/Feb/20

lim_(x→0)  ((ln(tan x+1)−sin x)/(xsin x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ln}\left(\mathrm{tan}\:{x}+\mathrm{1}\right)−\mathrm{sin}\:{x}}{{x}\mathrm{sin}\:{x}} \\ $$

Commented by abdomathmax last updated on 02/Feb/20

we have ln^′ (1+u)=(1/(1+u))=1−u +o(u^2 )(u∼0)  ⇒ln(1+u)=u−(u^2 /2) +o(u^3 )  sinx=Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/((2n+1)!))  ⇒sinx=x−(x^3 /(3!)) +o(x^3 )  ln(1+tanx)∼ln(1+x)=x−(x^2 /2) +o(x^3 ) ⇒  ln(1+tanx)−sinx ∼x−(x^2 /2)−x+(x^3 /(3!)) =(x^3 /6)−(x^2 /2)  xsinx ∼x^2  ⇒((ln(1+tanx)−sinx)/(xsinx))∼(x/6)−(1/2) ⇒  lim_(x→0)    ((ln(1+tanx)−sinx)/(xsinx))=−(1/2)

$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{u}\right)=\frac{\mathrm{1}}{\mathrm{1}+{u}}=\mathrm{1}−{u}\:+{o}\left({u}^{\mathrm{2}} \right)\left({u}\sim\mathrm{0}\right) \\ $$$$\Rightarrow{ln}\left(\mathrm{1}+{u}\right)={u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({u}^{\mathrm{3}} \right) \\ $$$${sinx}=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:\Rightarrow{sinx}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+{o}\left({x}^{\mathrm{3}} \right) \\ $$$${ln}\left(\mathrm{1}+{tanx}\right)\sim{ln}\left(\mathrm{1}+{x}\right)={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{tanx}\right)−{sinx}\:\sim{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:=\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${xsinx}\:\sim{x}^{\mathrm{2}} \:\Rightarrow\frac{{ln}\left(\mathrm{1}+{tanx}\right)−{sinx}}{{xsinx}}\sim\frac{{x}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{1}+{tanx}\right)−{sinx}}{{xsinx}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by john santu last updated on 02/Feb/20

L′Hopital  lim_(x→0)  ((((sec^2 x)/(1+tan x))−cos x)/(xcos x+sin x)) =  A= lim_(x→0)  (1/(1+tan x))=1  B=lim_(x→0)  ((sec^2 x−cos x(1+tan x))/(xcos x+sin x))  B= lim_(x→0) ((sec^2 x−cos x−sin x)/(xcos x+sin x))  B= lim_(x→0) (1/(  cos^2 x))×lim_(x→0) ((1−cos^3 x−(1−sin^2 x)sin x)/(xcos x+sin x))  B= lim_(x→0) ((3cos^2 xsin x−cos x+3sin^2 xcos x)/(−xsin x+cos x+cos x))  B=−(1/2) ⇔ A×B = −(1/2)

$${L}'{Hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{sec}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{tan}\:{x}}−\mathrm{cos}\:{x}}{{x}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}\:= \\ $$$${A}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}\:{x}}=\mathrm{1} \\ $$$${B}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{cos}\:{x}\left(\mathrm{1}+\mathrm{tan}\:{x}\right)}{{x}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}} \\ $$$${B}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}} \\ $$$${B}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\:\:\mathrm{cos}\:^{\mathrm{2}} {x}}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{3}} {x}−\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)\mathrm{sin}\:{x}}{{x}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}} \\ $$$${B}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3cos}\:^{\mathrm{2}} {x}\mathrm{sin}\:{x}−\mathrm{cos}\:{x}+\mathrm{3sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:{x}}{−{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}+\mathrm{cos}\:{x}} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Leftrightarrow\:{A}×{B}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Commented by jagoll last updated on 02/Feb/20

thank you mister

$${thank}\:{you}\:{mister} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com