All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 80343 by jagoll last updated on 02/Feb/20
limx→0ln(tanx+1)−sinxxsinx
Commented by abdomathmax last updated on 02/Feb/20
wehaveln′(1+u)=11+u=1−u+o(u2)(u∼0)⇒ln(1+u)=u−u22+o(u3)sinx=∑n=0∞(−1)nx2n+1(2n+1)!⇒sinx=x−x33!+o(x3)ln(1+tanx)∼ln(1+x)=x−x22+o(x3)⇒ln(1+tanx)−sinx∼x−x22−x+x33!=x36−x22xsinx∼x2⇒ln(1+tanx)−sinxxsinx∼x6−12⇒limx→0ln(1+tanx)−sinxxsinx=−12
Commented by john santu last updated on 02/Feb/20
L′Hopitallimx→0sec2x1+tanx−cosxxcosx+sinx=A=limx→011+tanx=1B=limx→0sec2x−cosx(1+tanx)xcosx+sinxB=limx→0sec2x−cosx−sinxxcosx+sinxB=limx→01cos2x×limx→01−cos3x−(1−sin2x)sinxxcosx+sinxB=limx→03cos2xsinx−cosx+3sin2xcosx−xsinx+cosx+cosxB=−12⇔A×B=−12
Commented by jagoll last updated on 02/Feb/20
thankyoumister
Terms of Service
Privacy Policy
Contact: info@tinkutara.com