Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80369 by M±th+et£s last updated on 02/Feb/20

Commented by mathmax by abdo last updated on 03/Feb/20

let A =∫∫∫_([0,1]^3 )    (1+u^2  +v^2  +w^2 )^(−2) dudvdw  we use the diffeomrphisme (r,θ,ϕ)→ϕ(r,θ,ϕ)  =(ϕ_1 ,ϕ_2 ,ϕ_3 )=(u,v,w) with u=rsinθ cosϕ  v=rsinθ sinϕ  w=rcosθ      we have  o≤u^2 ≤1 ,o≤v^2 ≤1 ,o≤w^2 ≤1 ⇒1≤u^(2 ) +v^2  +w^2 ≤3 ⇒  0≤r^2 sin^2 θ cos^2 ϕ +r^2  sin^2 θsin^2 ϕ +r^2  cos^2 θ ≤3 ⇒  0≤r^2 ≤3 ⇒0≤r≤(√3)  A =∫∫∫_(0≤r≤(√3)  and  0≤θ≤π and  0≤ϕ≤2π)   (1+r^2 )^(−2) r^2  sinθ  dr dθ dϕ  =∫_0 ^(√3) (r^2 /((1+r^2 )^2 ))dr ∫_0 ^π  sinθ dθ  ∫_0 ^(2π)  dϕ  =2π[cosθ]_0 ^π .∫_0 ^(√3)   ((r^2 dr)/((r^2  +1)^2 )) =−4π ∫_0 ^(√3)   ((r^2 +1−1)/((r^2  +1)^2 ))dr  =−4π ∫_0 ^(√3)  (dr/(r^2 +1)) +4π ∫_0 ^(√3)   (dr/((r^2  +1)^2 ))  ∫_0 ^(√3)   (dr/(r^2  +1)) =[arctanr]_0 ^(√3) =(π/3)  ∫_0 ^(√3)   (dr/((r^2  +1)^2 )) =_(r=tant)    ∫_0 ^(π/3)   (((1+tan^2 t)dt)/((1+tan^2 t)^2 ))=∫_0 ^(π/3)  (dt/(1+tan^2 t))  =∫_0 ^(π/3) cos^2 t dt =∫_0 ^(π/3) ((1+cos(2t))/2)dt=(π/6) +(1/2) ∫_0 ^(π/3)  cos(2t)dt  =(π/6) +(1/4)[sin(2t)]_0 ^(π/3)  =(π/6) +(1/4){sin(((2π)/3))}=(π/6)+(1/4)×((√3)/2) ⇒  A =−(4/3)π^2 +4π{(π/6) +((√3)/8)} =−((4π^2 )/3) +((2π^2 )/3) +((π(√3))/2)  =((π(√3))/2)−((2π^2 )/3)

letA=[0,1]3(1+u2+v2+w2)2dudvdwweusethediffeomrphisme(r,θ,φ)φ(r,θ,φ)=(φ1,φ2,φ3)=(u,v,w)withu=rsinθcosφv=rsinθsinφw=rcosθwehaveou21,ov21,ow211u2+v2+w230r2sin2θcos2φ+r2sin2θsin2φ+r2cos2θ30r230r3A=0r3and0θπand0φ2π(1+r2)2r2sinθdrdθdφ=03r2(1+r2)2dr0πsinθdθ02πdφ=2π[cosθ]0π.03r2dr(r2+1)2=4π03r2+11(r2+1)2dr=4π03drr2+1+4π03dr(r2+1)203drr2+1=[arctanr]03=π303dr(r2+1)2=r=tant0π3(1+tan2t)dt(1+tan2t)2=0π3dt1+tan2t=0π3cos2tdt=0π31+cos(2t)2dt=π6+120π3cos(2t)dt=π6+14[sin(2t)]0π3=π6+14{sin(2π3)}=π6+14×32A=43π2+4π{π6+38}=4π23+2π23+π32=π322π23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com