All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 80369 by M±th+et£s last updated on 02/Feb/20
Commented by mathmax by abdo last updated on 03/Feb/20
letA=∫∫∫[0,1]3(1+u2+v2+w2)−2dudvdwweusethediffeomrphisme(r,θ,φ)→φ(r,θ,φ)=(φ1,φ2,φ3)=(u,v,w)withu=rsinθcosφv=rsinθsinφw=rcosθwehaveo⩽u2⩽1,o⩽v2⩽1,o⩽w2⩽1⇒1⩽u2+v2+w2⩽3⇒0⩽r2sin2θcos2φ+r2sin2θsin2φ+r2cos2θ⩽3⇒0⩽r2⩽3⇒0⩽r⩽3A=∫∫∫0⩽r⩽3and0⩽θ⩽πand0⩽φ⩽2π(1+r2)−2r2sinθdrdθdφ=∫03r2(1+r2)2dr∫0πsinθdθ∫02πdφ=2π[cosθ]0π.∫03r2dr(r2+1)2=−4π∫03r2+1−1(r2+1)2dr=−4π∫03drr2+1+4π∫03dr(r2+1)2∫03drr2+1=[arctanr]03=π3∫03dr(r2+1)2=r=tant∫0π3(1+tan2t)dt(1+tan2t)2=∫0π3dt1+tan2t=∫0π3cos2tdt=∫0π31+cos(2t)2dt=π6+12∫0π3cos(2t)dt=π6+14[sin(2t)]0π3=π6+14{sin(2π3)}=π6+14×32⇒A=−43π2+4π{π6+38}=−4π23+2π23+π32=π32−2π23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com