Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80397 by M±th+et£s last updated on 02/Feb/20

show that  ∫_0 ^(π/2) ∫_0 ^∞  (1/((x^π )^(1/y)  +1)) dx dy =2c   whrre c denote tha catalan^, s constant

showthat0π201xπy+1dxdy=2cwhrrecdenotethacatalan,sconstant

Commented by mathmax by abdo last updated on 02/Feb/20

vhangement^y (√x^π )=t give  x=t^(y/π)  ⇒  ∫_0 ^∞    (dx/((^y (√x^π ))+1)) =∫_0 ^∞   (y/π)t^((y/π)−1) ×(dt/(t+1)) =(y/π)∫_0 ^∞   (t^((y/π)−1) /(t+1))dt  =(y/π)×(π/(sin(π.(y/π)))) =(y/(siny)) ⇒∫_0 ^(π/2)  ∫_0 ^∞    (dx/((^y (√x^π )+1)))dy  =∫_0 ^(π/2)   (y/(siny))dy ...we can find a approximat value for this integral  ...be continued...

vhangementyxπ=tgivex=tyπ0dx(yxπ)+1=0yπtyπ1×dtt+1=yπ0tyπ1t+1dt=yπ×πsin(π.yπ)=ysiny0π20dx(yxπ+1)dy=0π2ysinydy...wecanfindaapproximatvalueforthisintegral...becontinued...

Commented by mathmax by abdo last updated on 03/Feb/20

changement tan((y/2))=t give  ∫_0 ^(π/2)  ((ydy)/(siny)) =∫_0 ^1   ((2arctan(t))/((2t)/(1+t^2 )))×((2t)/(1+t^2 ))dt =2 ∫_0 ^1  arctan(t)dt   we have arctan^′ (t)=(1/(1+t^2 )) =Σ_(n=0) ^∞ (−1)^n  t^(2n)  ⇒  arctan(t)=Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)  + c (c=0) ⇒∫_0 ^1  arctan(t)dt  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))∫_0 ^1  t^(2n)  dt =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 )) =K(constante  of catalan)  ⇒∫_0 ^(π/2)  (y/(siny))dy =2K = ∫_0 ^(π/2) ∫_0 ^∞     (dx/((^y (√x^π )+1)))dy

changementtan(y2)=tgive0π2ydysiny=012arctan(t)2t1+t2×2t1+t2dt=201arctan(t)dtwehavearctan(t)=11+t2=n=0(1)nt2narctan(t)=n=0(1)n2n+1t2n+c(c=0)01arctan(t)dt=n=0(1)n2n+101t2ndt=n=0(1)n(2n+1)2=K(constanteofcatalan)0π2ysinydy=2K=0π20dx(yxπ+1)dy

Commented by mathmax by abdo last updated on 03/Feb/20

K ∼ 0,9159...

K0,9159...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com