Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80416 by jagoll last updated on 03/Feb/20

∫_0 ^(π/2)  ((xcos x)/((1+sin x)^2 )) dx ?

π20xcosx(1+sinx)2dx?

Answered by MJS last updated on 03/Feb/20

∫((xcos x)/((1+sin x)^2 ))dx=       by parts       u=x → u′=1       v′=((cos x)/((1+sin x)^2 )) → v=−(1/(1+sin x))  =−(x/(1+sin x))+∫(dx/(1+sin x))=  =−(x/(1+sin x))+tan x −(1/(cos x))+C  ∫_0 ^(π/2) ((xcos x)/((1+sin x)^2 ))dx=       [lim_(x→(π/2))  (tan x −(1/(cos x)))=0]  =1−(π/4)

xcosx(1+sinx)2dx=bypartsu=xu=1v=cosx(1+sinx)2v=11+sinx=x1+sinx+dx1+sinx==x1+sinx+tanx1cosx+Cπ20xcosx(1+sinx)2dx=[limxπ2(tanx1cosx)=0]=1π4

Commented by jagoll last updated on 03/Feb/20

((−x)/(1+sin x))∣_0 ^(π/2) = ((−(π/2))/2)=−(π/4).  how get 1−(π/4) sir?

x1+sinx0π2=π22=π4.howget1π4sir?

Commented by jagoll last updated on 03/Feb/20

oo i understand sir . get 1

ooiunderstandsir.get1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com