Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80432 by Power last updated on 03/Feb/20

Commented by mr W last updated on 03/Feb/20

Commented by john santu last updated on 03/Feb/20

very small sir. haha

verysmallsir.haha

Commented by Power last updated on 03/Feb/20

solution sir

solutionsir

Commented by mr W last updated on 03/Feb/20

Commented by abdomathmax last updated on 03/Feb/20

I=∫ e^(3x) sin^4 xdx ⇒I =∫ e^(3x) (((1−cos(2x))/2))^2 dx  =(1/4)∫ e^(3x) (cos^2 (2x)−2cos(2x)+1)dx  =(1/4)∫  e^(3x) (((1+cos(4x))/2)−2 cos(2x)+1)dx  =(1/8)∫ e^(3x) (1 +cos(4x)−4cos(2x)+2)dx  =(1/8)∫ e^(3x) (3 +cos(4x)−4cos(2x))dx  =(3/8)∫ e^(3x) dx +(1/8)∫  e^(3x) cos(4x)dx−(1/2)∫ e^(3x) cos(2x)dx  ∫ e^(3x) dx =(1/3)e^(3x)  +c_0   ∫ e^(3x) cos(4x)dx =Re(∫ e^(3x+4ix) dx)  ∫  e^((3+4i)x) dx =(1/(3+4i))e^((3+4i)x)  +c  =((3+4i)/(25))e^(3x) (cos(4x)+isin(4x)) +c  =(e^(3x) /(25))(3+4i){cos(4x)+isin(4x)} +c  =(e^(3x) /(25)){3cos(4x)+3isin(4x)+4icos(4x)−4sin(4x)}  ⇒∫ e^(3x) cos(4x)dx  =(e^(3x) /(25))( 3cos(4x)−4sin(4x)) +c_1   ∫ e^(3x) cos(2x)dx =Re(∫ e^((3+2i)x) dx)  ∫  e^((3+2i)x) dx =(1/(3+2i))e^((3+2i)x)  +c  =((3−2i)/(13)) e^(3x) (cos(2x)+isin(2x))  =(e^(3x) /(13)){ 3cos(2x)+3isin(2x)−2icos(2x) +2sin(2x)}  ⇒∫ e^(3x) cos(2x)dx  =(e^(3x) /(13)){3cos(2x)+2sin(2x)} ⇒  I=(1/8)e^(3x)  +(e^(3x) /(8×25)){3cos(4x)−4sin(4x)}  −(e^(3x) /(26)){3cos(2x)+2sin(2x)} +C

I=e3xsin4xdxI=e3x(1cos(2x)2)2dx=14e3x(cos2(2x)2cos(2x)+1)dx=14e3x(1+cos(4x)22cos(2x)+1)dx=18e3x(1+cos(4x)4cos(2x)+2)dx=18e3x(3+cos(4x)4cos(2x))dx=38e3xdx+18e3xcos(4x)dx12e3xcos(2x)dxe3xdx=13e3x+c0e3xcos(4x)dx=Re(e3x+4ixdx)e(3+4i)xdx=13+4ie(3+4i)x+c=3+4i25e3x(cos(4x)+isin(4x))+c=e3x25(3+4i){cos(4x)+isin(4x)}+c=e3x25{3cos(4x)+3isin(4x)+4icos(4x)4sin(4x)}e3xcos(4x)dx=e3x25(3cos(4x)4sin(4x))+c1e3xcos(2x)dx=Re(e(3+2i)xdx)e(3+2i)xdx=13+2ie(3+2i)x+c=32i13e3x(cos(2x)+isin(2x))=e3x13{3cos(2x)+3isin(2x)2icos(2x)+2sin(2x)}e3xcos(2x)dx=e3x13{3cos(2x)+2sin(2x)}I=18e3x+e3x8×25{3cos(4x)4sin(4x)}e3x26{3cos(2x)+2sin(2x)}+C

Commented by Power last updated on 03/Feb/20

thanks

thanks

Commented by Tony Lin last updated on 03/Feb/20

sin^4 x=(sin^2 x)^2 =(((1−cos2x)/2))^2   =((1+cos^2 2x−2cos2x)/4)  =((1+(((1+cos4x)/2) ) −2cos2x)/4)  =(3/8)+((cos4x)/8)−((cos2x)/2)  ∫e^(3x) sin^4 xdx  =(3/8)∫e^(3x) dx+(1/8)∫e^(3x) cos4xdx−(1/2)∫e^(3x) cos2xdx  ∫e^(3x) cos4xdx  =(1/3)e^(3x) cos4x+(4/3)∫e^(3x) sin4xdx  =(1/3)e^(3x) cos4x+(4/3)((1/3)e^(3x) sin4x−(4/3)∫e^(3x) cos4xdx)  ((25)/9)∫e^(3x) cos4xdx=(1/3)e^(3x) cos4x+(4/9)e^(3x) sin4x+c_1   ⇒∫e^(3x) cos4xdx=(3/(25))e^(3x) cos4x+(4/(25))e^(3x) sin4x+c_2   ∫e^(3x) cos2xdx  =(1/3)e^(3x) cos2x+(2/3)∫e^(3x) sin2xdx  =(1/3)e^(3x) cos2x+(2/3)((1/3)e^(3x) sin2x−(2/3)∫e^(3x) cos2xdx)  ((13)/9)∫e^(3x) cos2xdx=(1/3)e^(3x) cos2x+(2/9)e^(3x) sin2x+c_3   ⇒∫e^(3x) cos2xdx=(3/(13))e^(3x) cos2x+(2/(13))e^(3x) sin2x+c_4   ∫e^(3x) dx=(e^(3x) /3)+c_5   ∴∫e^(3x) sin^4 xdx  =(1/8)e^(3x) +(3/(200))e^(3x) cos4x+(1/(50))e^(3x) sin4x−  (3/(26))e^(3x) cos2x−(1/(13))e^(3x) sin2x+c

sin4x=(sin2x)2=(1cos2x2)2=1+cos22x2cos2x4=1+(1+cos4x2)2cos2x4=38+cos4x8cos2x2e3xsin4xdx=38e3xdx+18e3xcos4xdx12e3xcos2xdxe3xcos4xdx=13e3xcos4x+43e3xsin4xdx=13e3xcos4x+43(13e3xsin4x43e3xcos4xdx)259e3xcos4xdx=13e3xcos4x+49e3xsin4x+c1e3xcos4xdx=325e3xcos4x+425e3xsin4x+c2e3xcos2xdx=13e3xcos2x+23e3xsin2xdx=13e3xcos2x+23(13e3xsin2x23e3xcos2xdx)139e3xcos2xdx=13e3xcos2x+29e3xsin2x+c3e3xcos2xdx=313e3xcos2x+213e3xsin2x+c4e3xdx=e3x3+c5e3xsin4xdx=18e3x+3200e3xcos4x+150e3xsin4x326e3xcos2x113e3xsin2x+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com