Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80448 by mind is power last updated on 03/Feb/20

Hello All of You verry Nice Day, God bless You love peace and   happiness   Solve for (x,y)∈R^2     { ((x^2 +y^2 =2x+3y+1)),((x^4 +y^4 =4x^2 +9y^2 +12xy+2x^2 y^2 +18)) :}

$${Hello}\:{All}\:{of}\:{You}\:{verry}\:{Nice}\:{Day},\:{God}\:{bless}\:{You}\:{love}\:{peace}\:{and}\: \\ $$$${happiness}\: \\ $$$${Solve}\:{for}\:\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \: \\ $$$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{1}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{4}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} +\mathrm{12}{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{18}}\end{cases} \\ $$$$ \\ $$

Commented by mr W last updated on 03/Feb/20

thank you sir! the same to you!

$${thank}\:{you}\:{sir}!\:{the}\:{same}\:{to}\:{you}! \\ $$

Commented by john santu last updated on 03/Feb/20

x^4 +y^4 =(x^2 +y^2 )^2 −2x^2 y^2   (2x+3y+1)^2 −2x^2 y^2 =4x^2 +9y^2 +12xy+2x^2 y^2 +18  4x^2 +9y^2 +1+2(6xy+2x+3y)−2x^2 y^2 =  4x^2 +9y^2 +12xy+2x^2 y^2 +18  1+4x+6y−2x^2 y^2 =2x^2 y^2 +18  4x^2 y^2 −4x−6y+17=0  4x^2 y^2 −2(2x+3y)+17=0  4x^2 y^2 −2(x^2 +y^2 −1)+17=0  2(x^2 +y^2 )−4x^2 y^2 −19=0  let x^2  = t , y^2 =p   2(t+p)−4tp−19=0  next...

$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{4}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} +\mathrm{12}{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{18} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}\left(\mathrm{6}{xy}+\mathrm{2}{x}+\mathrm{3}{y}\right)−\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} = \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} +\mathrm{12}{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{18} \\ $$$$\mathrm{1}+\mathrm{4}{x}+\mathrm{6}{y}−\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{18} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{6}{y}+\mathrm{17}=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}{x}+\mathrm{3}{y}\right)+\mathrm{17}=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{17}=\mathrm{0} \\ $$$$\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)−\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{19}=\mathrm{0} \\ $$$${let}\:{x}^{\mathrm{2}} \:=\:{t}\:,\:{y}^{\mathrm{2}} ={p}\: \\ $$$$\mathrm{2}\left({t}+{p}\right)−\mathrm{4}{tp}−\mathrm{19}=\mathrm{0} \\ $$$${next}... \\ $$

Commented by jagoll last updated on 03/Feb/20

to be continue

$${to}\:{be}\:{continue} \\ $$

Answered by MJS last updated on 03/Feb/20

let x=u−v∧y=u+v   { ((2u^2 +2v^2 =5u+v+1)),((2u^4 +12u^2 v^2 +2v^4 =2u^4 −4u^2 v^2 +2v^4 +25u^2 +10uv+v^2 +18)) :}   { ((2u^2 +2v^2 −5u−v−1=0)),((16u^2 v^2 −25u^2 −10uv−v^2 −18=0)) :}   { ((v^2 −(v/2)+((2u^2 −5u−1)/2)=0)),((v^2 −((10u)/(16u^2 −1))v−((25u^2 +18)/(16u^2 −1))=0)) :}  subtracting (1) − (2) and solving for v leads to  v=((32u^4 −80u^3 +32u^2 +5u+37)/(16u^2 −20u−1))  inserting in (1) or (2) leads to a polynome of  8^(th)  degree for u I can only solve approximately  ⇒  (all rounded to 6 significant digits)  x_1 =−.184612  y_1 =3.18722  x_2 =.323632  y_2 =3.44744  x_(3, 4) =−1.37362±.450762i  y_(3, 4) =.705266∓1.34628i  x_(5, 6) =.618559±1.80074  y_(5, 6) =−1.22229∓.252316i  x_(7, 8) =2.68555±.324293i  y_(7, 8) =.199692±.420370i  these solutions give the folliwing polynomes:  x^8 −4x^7 +2x^6 +6x^5 −16x^4 +15x^3 +((109)/2)x^2 −((17)/2)x−((53)/(16))=0  y^8 −6y^7 +7y^6 +9y^5 −((37)/2)y^4 +((45)/2)y^3 +((123)/4)y^2 −((51)/4)y+((137)/(16))=0

$$\mathrm{let}\:{x}={u}−{v}\wedge{y}={u}+{v} \\ $$$$\begin{cases}{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{2}} =\mathrm{5}{u}+{v}+\mathrm{1}}\\{\mathrm{2}{u}^{\mathrm{4}} +\mathrm{12}{u}^{\mathrm{2}} {v}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{4}} =\mathrm{2}{u}^{\mathrm{4}} −\mathrm{4}{u}^{\mathrm{2}} {v}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{4}} +\mathrm{25}{u}^{\mathrm{2}} +\mathrm{10}{uv}+{v}^{\mathrm{2}} +\mathrm{18}}\end{cases} \\ $$$$\begin{cases}{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{2}} −\mathrm{5}{u}−{v}−\mathrm{1}=\mathrm{0}}\\{\mathrm{16}{u}^{\mathrm{2}} {v}^{\mathrm{2}} −\mathrm{25}{u}^{\mathrm{2}} −\mathrm{10}{uv}−{v}^{\mathrm{2}} −\mathrm{18}=\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{{v}^{\mathrm{2}} −\frac{{v}}{\mathrm{2}}+\frac{\mathrm{2}{u}^{\mathrm{2}} −\mathrm{5}{u}−\mathrm{1}}{\mathrm{2}}=\mathrm{0}}\\{{v}^{\mathrm{2}} −\frac{\mathrm{10}{u}}{\mathrm{16}{u}^{\mathrm{2}} −\mathrm{1}}{v}−\frac{\mathrm{25}{u}^{\mathrm{2}} +\mathrm{18}}{\mathrm{16}{u}^{\mathrm{2}} −\mathrm{1}}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{subtracting}\:\left(\mathrm{1}\right)\:−\:\left(\mathrm{2}\right)\:\mathrm{and}\:\mathrm{solving}\:\mathrm{for}\:{v}\:\mathrm{leads}\:\mathrm{to} \\ $$$${v}=\frac{\mathrm{32}{u}^{\mathrm{4}} −\mathrm{80}{u}^{\mathrm{3}} +\mathrm{32}{u}^{\mathrm{2}} +\mathrm{5}{u}+\mathrm{37}}{\mathrm{16}{u}^{\mathrm{2}} −\mathrm{20}{u}−\mathrm{1}} \\ $$$$\mathrm{inserting}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\mathrm{or}\:\left(\mathrm{2}\right)\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of} \\ $$$$\mathrm{8}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{for}\:{u}\:\mathrm{I}\:\mathrm{can}\:\mathrm{only}\:\mathrm{solve}\:\mathrm{approximately} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{all}\:\mathrm{rounded}\:\mathrm{to}\:\mathrm{6}\:\mathrm{significant}\:\mathrm{digits}\right) \\ $$$${x}_{\mathrm{1}} =−.\mathrm{184612}\:\:{y}_{\mathrm{1}} =\mathrm{3}.\mathrm{18722} \\ $$$${x}_{\mathrm{2}} =.\mathrm{323632}\:\:{y}_{\mathrm{2}} =\mathrm{3}.\mathrm{44744} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} =−\mathrm{1}.\mathrm{37362}\pm.\mathrm{450762i}\:\:{y}_{\mathrm{3},\:\mathrm{4}} =.\mathrm{705266}\mp\mathrm{1}.\mathrm{34628i} \\ $$$${x}_{\mathrm{5},\:\mathrm{6}} =.\mathrm{618559}\pm\mathrm{1}.\mathrm{80074}\:\:{y}_{\mathrm{5},\:\mathrm{6}} =−\mathrm{1}.\mathrm{22229}\mp.\mathrm{252316i} \\ $$$${x}_{\mathrm{7},\:\mathrm{8}} =\mathrm{2}.\mathrm{68555}\pm.\mathrm{324293i}\:\:{y}_{\mathrm{7},\:\mathrm{8}} =.\mathrm{199692}\pm.\mathrm{420370i} \\ $$$$\mathrm{these}\:\mathrm{solutions}\:\mathrm{give}\:\mathrm{the}\:\mathrm{folliwing}\:\mathrm{polynomes}: \\ $$$${x}^{\mathrm{8}} −\mathrm{4}{x}^{\mathrm{7}} +\mathrm{2}{x}^{\mathrm{6}} +\mathrm{6}{x}^{\mathrm{5}} −\mathrm{16}{x}^{\mathrm{4}} +\mathrm{15}{x}^{\mathrm{3}} +\frac{\mathrm{109}}{\mathrm{2}}{x}^{\mathrm{2}} −\frac{\mathrm{17}}{\mathrm{2}}{x}−\frac{\mathrm{53}}{\mathrm{16}}=\mathrm{0} \\ $$$${y}^{\mathrm{8}} −\mathrm{6}{y}^{\mathrm{7}} +\mathrm{7}{y}^{\mathrm{6}} +\mathrm{9}{y}^{\mathrm{5}} −\frac{\mathrm{37}}{\mathrm{2}}{y}^{\mathrm{4}} +\frac{\mathrm{45}}{\mathrm{2}}{y}^{\mathrm{3}} +\frac{\mathrm{123}}{\mathrm{4}}{y}^{\mathrm{2}} −\frac{\mathrm{51}}{\mathrm{4}}{y}+\frac{\mathrm{137}}{\mathrm{16}}=\mathrm{0} \\ $$

Commented by mind is power last updated on 04/Feb/20

thank You Sir nice Worck

$${thank}\:{You}\:{Sir}\:{nice}\:{Worck} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com