Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80451 by abdomathmax last updated on 03/Feb/20

calculate  ∫_0 ^∞     ((cos(πx))/((x^2 +3)^2 ))dx

calculate0cos(πx)(x2+3)2dx

Commented by abdomathmax last updated on 04/Feb/20

let I=∫_0 ^∞   ((cos(πx))/((x^2 +3)^2 ))dx  changement x=(√3)t give  I=∫_0 ^∞  ((cos(π(√3)t))/(9(t^2 +1)))×(√3)dt=((√3)/9)∫_0 ^∞   ((cos(π(√3)t))/((t^2 +1)^2 ))dt  =((√3)/(18))∫_(−∞) ^(+∞)  ((cos(π(√3)t))/((t^2 +1)^2 ))dt =((√3)/(18))Re( ∫_(−∞) ^(+∞)  (e^(iπ(√3)t) /((t^2 +1)^2 ))dt)  letϕ(z)=(e^(iπ(√3)z) /((z^2 +1)^2 )) ⇒ϕ(z)=(e^(iπ(√3)z) /((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i)    (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    { (e^(iπ(√3)z) /((z+i)^2 ))}^((1))   =lim_(z→i)    ((iπ(√3)e^(iπ(√3)z) (z+i)^2 −2(z+i)e^(iπ(√3)z) )/((z+i)^4 ))  =lim_(z→i)    ((iπ(√3)(z+i)e^(iπ(√3)z) −2e^(iπ(√3)z) )/((z+i)^3 ))  =lim_(z→i)    (({iπ(√3)(z+i)−2}e^(iπ(√3)z) )/((z+i)^3 ))  =(({(2i)iπ(√3)−2}e^(−π(√3)) )/((2i)^3 ))  =(({−2π(√3)−2}e^(−π(√3)) )/(−8i)) =(((π(√3)+1)e^(−π(√3)) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(((π(√3)+1)e^(−π(√3)) )/(4i))  =(π/2)(1+π(√3))e^(−π(√3))   ⇒I=((√3)/(18))×(π/2)(1+π(√3))e^(−π(√3))   =((π(√3))/(36))(1+π(√3))e^(−π(√3))

letI=0cos(πx)(x2+3)2dxchangementx=3tgiveI=0cos(π3t)9(t2+1)×3dt=390cos(π3t)(t2+1)2dt=318+cos(π3t)(t2+1)2dt=318Re(+eiπ3t(t2+1)2dt)letφ(z)=eiπ3z(z2+1)2φ(z)=eiπ3z(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eiπ3z(z+i)2}(1)=limziiπ3eiπ3z(z+i)22(z+i)eiπ3z(z+i)4=limziiπ3(z+i)eiπ3z2eiπ3z(z+i)3=limzi{iπ3(z+i)2}eiπ3z(z+i)3={(2i)iπ32}eπ3(2i)3={2π32}eπ38i=(π3+1)eπ34i+φ(z)dz=2iπ×(π3+1)eπ34i=π2(1+π3)eπ3I=318×π2(1+π3)eπ3=π336(1+π3)eπ3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com