All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 80451 by abdomathmax last updated on 03/Feb/20
calculate∫0∞cos(πx)(x2+3)2dx
Commented by abdomathmax last updated on 04/Feb/20
letI=∫0∞cos(πx)(x2+3)2dxchangementx=3tgiveI=∫0∞cos(π3t)9(t2+1)×3dt=39∫0∞cos(π3t)(t2+1)2dt=318∫−∞+∞cos(π3t)(t2+1)2dt=318Re(∫−∞+∞eiπ3t(t2+1)2dt)letφ(z)=eiπ3z(z2+1)2⇒φ(z)=eiπ3z(z−i)2(z+i)2∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{eiπ3z(z+i)2}(1)=limz→iiπ3eiπ3z(z+i)2−2(z+i)eiπ3z(z+i)4=limz→iiπ3(z+i)eiπ3z−2eiπ3z(z+i)3=limz→i{iπ3(z+i)−2}eiπ3z(z+i)3={(2i)iπ3−2}e−π3(2i)3={−2π3−2}e−π3−8i=(π3+1)e−π34i⇒∫−∞+∞φ(z)dz=2iπ×(π3+1)e−π34i=π2(1+π3)e−π3⇒I=318×π2(1+π3)e−π3=π336(1+π3)e−π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com