Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80452 by abdomathmax last updated on 03/Feb/20

find  ∫_(−∞) ^(+∞)    ((cos(2x^2 +1))/(x^4 −x^2  +3))dx

find+cos(2x2+1)x4x2+3dx

Commented by abdomathmax last updated on 03/Mar/20

I= Re(∫_(−∞) ^(+∞)  (e^(i(2x^2 +1)) /(x^4 −x^2  +3)) dx)let W(z)=(e^(i(2z^2  +1)) /(z^4 −z^2  +3))  poles of W?  z^4 −z^(2 ) +3=0 ⇒t^2 −t +3=0   (t=z^2 )  Δ=1−12=−11 ⇒t_1 =((1+i(√(11)))/2)  t_2 =((1−i(√(11)))/2) ⇒W(z) =(e^(i(2z^2  +1)) /((z^2 −t_1 )(z^2 −t_2 )))  =(e^(i(2z^2  +1)) /((z−(√t_1 ))(z+(√t_1 ))(z−(√t_2 ))(z+(√t_2 ))))  ∣t_1 ∣=(1/2)(√(12))=(1/2)(2(√3)) =(√3) ⇒t_1 =(√3)e^(iarctan((√(11))))   t_2 =(√3)e^(−isrcran((√(11))))   ∫_(−∞) ^(+∞ ) W(z)dz =2iπ {Res(W,(√t_1 )) +Res(W,−(√t_2 ))}  =2iπ {Res(W,^4 (√3)e^((i/2)arcran((√(11)))) )+Res(W,−^4 (√3)e^(−(i/2)arcran((√(11)))) }  Res(W,(√t_1 )) =(e^(i(2t_1 +1)) /(2(√t_1 )×(t_1 −t_2 )))   Res(W,−(√t_2 )) =(e^(i(2t_2 +1)) /(−2(√t_2 )×(t_2 −t_1 ))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =((iπ)/(t_1 −t_2 )){ (e^(i(2t_1 +1)) /(√t_1 )) +(e^(i(2t_2 +1)) /(√t_2 ))}  ....be continued....

I=Re(+ei(2x2+1)x4x2+3dx)letW(z)=ei(2z2+1)z4z2+3polesofW?z4z2+3=0t2t+3=0(t=z2)Δ=112=11t1=1+i112t2=1i112W(z)=ei(2z2+1)(z2t1)(z2t2)=ei(2z2+1)(zt1)(z+t1)(zt2)(z+t2)t1∣=1212=12(23)=3t1=3eiarctan(11)t2=3eisrcran(11)+W(z)dz=2iπ{Res(W,t1)+Res(W,t2)}=2iπ{Res(W,43ei2arcran(11))+Res(W,43ei2arcran(11)}Res(W,t1)=ei(2t1+1)2t1×(t1t2)Res(W,t2)=ei(2t2+1)2t2×(t2t1)+W(z)dz=iπt1t2{ei(2t1+1)t1+ei(2t2+1)t2}....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com