All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 80452 by abdomathmax last updated on 03/Feb/20
find∫−∞+∞cos(2x2+1)x4−x2+3dx
Commented by abdomathmax last updated on 03/Mar/20
I=Re(∫−∞+∞ei(2x2+1)x4−x2+3dx)letW(z)=ei(2z2+1)z4−z2+3polesofW?z4−z2+3=0⇒t2−t+3=0(t=z2)Δ=1−12=−11⇒t1=1+i112t2=1−i112⇒W(z)=ei(2z2+1)(z2−t1)(z2−t2)=ei(2z2+1)(z−t1)(z+t1)(z−t2)(z+t2)∣t1∣=1212=12(23)=3⇒t1=3eiarctan(11)t2=3e−isrcran(11)∫−∞+∞W(z)dz=2iπ{Res(W,t1)+Res(W,−t2)}=2iπ{Res(W,43ei2arcran(11))+Res(W,−43e−i2arcran(11)}Res(W,t1)=ei(2t1+1)2t1×(t1−t2)Res(W,−t2)=ei(2t2+1)−2t2×(t2−t1)⇒∫−∞+∞W(z)dz=iπt1−t2{ei(2t1+1)t1+ei(2t2+1)t2}....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com