Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 80505 by Rio Michael last updated on 03/Feb/20

Given that  7^k  ≡1 (mod 15)  a) Write down three values of k.  b) Find the general solution of   the equation  7^k  ≡ 1 (mod 15)

$$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{7}^{{k}} \:\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{15}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Write}\:\mathrm{down}\:\mathrm{three}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\:\mathrm{7}^{{k}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{15}\right) \\ $$

Commented by mr W last updated on 03/Feb/20

k=4n with n∈N

$${k}=\mathrm{4}{n}\:{with}\:{n}\in\mathbb{N} \\ $$

Commented by Rio Michael last updated on 03/Feb/20

how sir?

$$\mathrm{how}\:\mathrm{sir}? \\ $$

Commented by mr W last updated on 03/Feb/20

7^k =15m+1  last digit of 7^k  can be 7,9,3,1  last digit of 15m+1 can be 6,1  the only possibility is that both have  the last digit 1. that means 7^k =(7^2 ×7^2 )^n ,  i.e. k=4n. we can prove that 7^(4n) −1  is indeed a multiple of 15.

$$\mathrm{7}^{{k}} =\mathrm{15}{m}+\mathrm{1} \\ $$$${last}\:{digit}\:{of}\:\mathrm{7}^{{k}} \:{can}\:{be}\:\mathrm{7},\mathrm{9},\mathrm{3},\mathrm{1} \\ $$$${last}\:{digit}\:{of}\:\mathrm{15}{m}+\mathrm{1}\:{can}\:{be}\:\mathrm{6},\mathrm{1} \\ $$$${the}\:{only}\:{possibility}\:{is}\:{that}\:{both}\:{have} \\ $$$${the}\:{last}\:{digit}\:\mathrm{1}.\:{that}\:{means}\:\mathrm{7}^{{k}} =\left(\mathrm{7}^{\mathrm{2}} ×\mathrm{7}^{\mathrm{2}} \right)^{{n}} , \\ $$$${i}.{e}.\:{k}=\mathrm{4}{n}.\:{we}\:{can}\:{prove}\:{that}\:\mathrm{7}^{\mathrm{4}{n}} −\mathrm{1} \\ $$$${is}\:{indeed}\:{a}\:{multiple}\:{of}\:\mathrm{15}. \\ $$

Commented by Rio Michael last updated on 03/Feb/20

sir how do you get thier last  digits please

$${sir}\:{how}\:{do}\:{you}\:{get}\:{thier}\:{last} \\ $$$${digits}\:{please} \\ $$

Commented by mr W last updated on 03/Feb/20

7 ⇒7  7×7 ⇒9  7×7×7 ⇒3  7×7×7×7 ⇒1  7×7×7×7×7 ⇒ 7 etc.    15×1+1 ⇒6  15×2+1 ⇒1  15×3+1 ⇒6 etc.

$$\mathrm{7}\:\Rightarrow\mathrm{7} \\ $$$$\mathrm{7}×\mathrm{7}\:\Rightarrow\mathrm{9} \\ $$$$\mathrm{7}×\mathrm{7}×\mathrm{7}\:\Rightarrow\mathrm{3} \\ $$$$\mathrm{7}×\mathrm{7}×\mathrm{7}×\mathrm{7}\:\Rightarrow\mathrm{1} \\ $$$$\mathrm{7}×\mathrm{7}×\mathrm{7}×\mathrm{7}×\mathrm{7}\:\Rightarrow\:\mathrm{7}\:{etc}. \\ $$$$ \\ $$$$\mathrm{15}×\mathrm{1}+\mathrm{1}\:\Rightarrow\mathrm{6} \\ $$$$\mathrm{15}×\mathrm{2}+\mathrm{1}\:\Rightarrow\mathrm{1} \\ $$$$\mathrm{15}×\mathrm{3}+\mathrm{1}\:\Rightarrow\mathrm{6}\:{etc}. \\ $$

Commented by mr W last updated on 04/Feb/20

here the proof that 7^(4n) ≡1 mod (15)  7^(4n) =2401^n =(2400+1)^n =Σ_(r=0) ^n C_r ^n ×2400^r   =1+Σ_(r=1) ^n C_r ^n ×2400^r   =1+Σ_(r=1) ^n C_r ^n ×(160×15)^r   ≡1 mod (15)

$${here}\:{the}\:{proof}\:{that}\:\mathrm{7}^{\mathrm{4}{n}} \equiv\mathrm{1}\:{mod}\:\left(\mathrm{15}\right) \\ $$$$\mathrm{7}^{\mathrm{4}{n}} =\mathrm{2401}^{{n}} =\left(\mathrm{2400}+\mathrm{1}\right)^{{n}} =\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{r}} ^{{n}} ×\mathrm{2400}^{{r}} \\ $$$$=\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{C}_{{r}} ^{{n}} ×\mathrm{2400}^{{r}} \\ $$$$=\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{C}_{{r}} ^{{n}} ×\left(\mathrm{160}×\mathrm{15}\right)^{{r}} \\ $$$$\equiv\mathrm{1}\:{mod}\:\left(\mathrm{15}\right) \\ $$

Commented by Rio Michael last updated on 04/Feb/20

thanks so much sir

$${thanks}\:{so}\:{much}\:{sir} \\ $$

Commented by mr W last updated on 04/Feb/20

see also Q80580

$${see}\:{also}\:{Q}\mathrm{80580} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com