Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80543 by Power last updated on 04/Feb/20

Commented by mr W last updated on 04/Feb/20

1010

1010

Commented by Power last updated on 04/Feb/20

solution sir

solutionsir

Commented by jagoll last updated on 04/Feb/20

let (√(x^2 −x)) =t  (t−2)(t−4)(t−6)...(t−2020)=1

letx2x=t(t2)(t4)(t6)...(t2020)=1

Commented by jagoll last updated on 04/Feb/20

  Σ_(t=1) ^(1010) t_i  = 2+4+6+...+2020

1010t=1ti=2+4+6+...+2020

Commented by mr W last updated on 04/Feb/20

correct is:  Σ_(t=1) ^(1010) t_i  =−(2+4+6+...+2020)

correctis:1010t=1ti=(2+4+6+...+2020)

Commented by jagoll last updated on 04/Feb/20

oo yes sir. thank you

ooyessir.thankyou

Answered by mr W last updated on 04/Feb/20

let (√(x^2 −x))=2z  (2z−2)(2z−4)...(2z−2020)=1  2^(1010) (z−1)(z−2)...(z−1010)=1  (z−1)(z−2)...(z−1010)−(1/2^(1010) )=0  this eqn. has 1010 roots for z, say  z_1 ,z_2 ,...,z_(1010)   Σ_(i=1) ^(1010) z_i =−(1+2+...+1010)=−510555  Π_(i=1) ^(1010) z_i =1×2×...×1010−(1/2^(1010) )=1010!−(1/2^(1010) )    (√(x^2 −x))=2z_i   (i=1,2,...,1010)  x^2 −x−4z_i ^2 =0  for each z_i  there are two roots for x:  x_(i,1)  and x_(i,2)  with  x_(i,1) +x_(i,2) =1, x_(i,1) x_(i,2) =−4z_i ^2     sum of all roots for x:  Σx=Σ_(i=1) ^(1010) (x_(i,1) +x_(i,2) )=Σ_(i=1) ^(1010) 1=1010    product of all roots for x:  Πx=Π_(i=1) ^(1010) (x_(i,1) x_(i,2) )=Π_(i=1) ^(1010) (−4z_i ^2 )  =(−4)^(1010) [Π_(i=1) ^(1010) z_i ]^2   =2^(2020) [1010!−(1/2^(1010) )]^2   =(2^(1010) ×1010!−1)^2     ⇒sum of all roots =1010 ⇒answer  ⇒product of all roots =(2^(1010) ×1010!−1)^2

letx2x=2z(2z2)(2z4)...(2z2020)=121010(z1)(z2)...(z1010)=1(z1)(z2)...(z1010)121010=0thiseqn.has1010rootsforz,sayz1,z2,...,z10101010i=1zi=(1+2+...+1010)=5105551010i=1zi=1×2×...×1010121010=1010!121010x2x=2zi(i=1,2,...,1010)x2x4zi2=0foreachzitherearetworootsforx:xi,1andxi,2withxi,1+xi,2=1,xi,1xi,2=4zi2sumofallrootsforx:Σx=1010i=1(xi,1+xi,2)=1010i=11=1010productofallrootsforx:Πx=1010i=1(xi,1xi,2)=1010i=1(4zi2)=(4)1010[1010i=1zi]2=22020[1010!121010]2=(21010×1010!1)2sumofallroots=1010answerproductofallroots=(21010×1010!1)2

Commented by Power last updated on 04/Feb/20

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com