Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80585 by ahmadshahhimat775@gmail.com last updated on 04/Feb/20

Commented by kaivan.ahmadi last updated on 04/Feb/20

2.  lim_(x→(π/6))  ((2sin2x+cosx)/(2sin2x−3cosx))=(((√3)+((√3)/2))/((√3)−((3(√3))/2)))=(((3(√3))/2)/((−(√3))/2))=−3

2.limxπ62sin2x+cosx2sin2x3cosx=3+323332=33232=3

Commented by kaivan.ahmadi last updated on 04/Feb/20

5.  lim_(x→(π/4))  (tgx−1)tg2x=lim_(x→(π/4))  ((tgx−1)/(cot2x))=  lim_(x→(π/4)) ((1+tg^2 x)/(−2(1+cot^2 2x)))=((1+1)/(−2(1+0)))=−1

5.limxπ4(tgx1)tg2x=limxπ4tgx1cot2x=limxπ41+tg2x2(1+cot22x)=1+12(1+0)=1

Commented by kaivan.ahmadi last updated on 04/Feb/20

6.  lim_(x→e) ((lnx+1−1)/(2/x))=((1+1−1)/(2/e))=(e/2)

6.limxelnx+112x=1+112e=e2

Commented by mathmax by abdo last updated on 04/Feb/20

1) let A_n =((2^n (n!))/n^n )  we have n!∼ n^n  e^(−n) (√(2πn)) ⇒  A_n ∼((2^n .n^n e^(−n) (√(2π))n)/n^n ) =((2/e))^n (√(2πn)) =(√(2π))e^(nln((2/e))) ×e^((1/2)ln(n))   =(√(2π))×e^(nln((2/e))+ln((√n)))   but we hsve  nln((2/e))+ln((√n)) =nln(2)−n +(1/2)ln(n)  =n{ln(2)−1+((ln(n))/(2n))}→+∞ ⇒ lim_(n→+∞)  A_n =+∞

1)letAn=2n(n!)nnwehaven!nnen2πnAn2n.nnen2πnnn=(2e)n2πn=2πenln(2e)×e12ln(n)=2π×enln(2e)+ln(n)butwehsvenln(2e)+ln(n)=nln(2)n+12ln(n)=n{ln(2)1+ln(n)2n}+limn+An=+

Commented by mathmax by abdo last updated on 04/Feb/20

forgive ln(2)−1<0 ⇒n{ln(2)−1+((ln(n))/(2n))}→−∞ ⇒  lim_(n→∞)  A_n =0

forgiveln(2)1<0n{ln(2)1+ln(n)2n}limnAn=0

Commented by mathmax by abdo last updated on 04/Feb/20

2)changement sinx=t give  lim_(x→(π/6))    ((2sin^2 x+sinx−1)/(2sin^2 x−3sinx+1)) =lim_(t→(1/2))   ((2t^2  +t−1)/(2t^2 −3t +1))  2t^2 +t−1 =2(t−(1/2))(t−a)=(2t−1)(t−a)⇒a=−1 ⇒  2t^2 +t−1 =(2t−1)(t+1)  2t^2 −3t +1 =2(t−(1/2))(t−b) =(2t−1)(t−b) ⇒b=1 ⇒  2t^2 −3t +1 =(2t−1)(t−1) ⇒  lim_(t→(1/2))  (...) =lim_(t→(1/2))    (((2t−1)(t+1))/((2t−1)(t−1))) =lim_(t→(1/2))   ((t+1)/(t−1)) =((3/2)/(−(1/2)))=−3

2)changementsinx=tgivelimxπ62sin2x+sinx12sin2x3sinx+1=limt122t2+t12t23t+12t2+t1=2(t12)(ta)=(2t1)(ta)a=12t2+t1=(2t1)(t+1)2t23t+1=2(t12)(tb)=(2t1)(tb)b=12t23t+1=(2t1)(t1)limt12(...)=limt12(2t1)(t+1)(2t1)(t1)=limt12t+1t1=3212=3

Commented by mathmax by abdo last updated on 04/Feb/20

let X_n =((n!)/4^n )  we have n!∼n^(n ) e^(−n) (√(2πn)) ⇒  X_n ∼ (n^n /((4e)^n ))(√(2π))n  =e^(nln(n)) e^(−nln(4e)) (√(2π))e^((1/2)ln(n))   =e^(nln(n)−nln(4e)+((ln(n))/2))  =e^(n{ln(n)−ln(4e)+((ln(n))/(2n))})  →+∞

letXn=n!4nwehaven!nnen2πnXnnn(4e)n2πn=enln(n)enln(4e)2πe12ln(n)=enln(n)nln(4e)+ln(n)2=en{ln(n)ln(4e)+ln(n)2n}+

Commented by mathmax by abdo last updated on 04/Feb/20

5) let f(x)=(tanx)^(tan(2x))  ⇒f(x)=e^(tan(2x)ln(tanx))   changement x=(π/4)+t give  x→(π/4) ⇔t→0  f(x)=g(t)=e^(tan(2((π/4)+t))ln(tan((π/4)+t)))   =e^(tan(2t+(π/2))ln(tan((π/4)+t)))   we have  tan(2t+(π/2))=((sin(2t+(π/2)))/(cos(2t+(π/2)))) =−(1/(tan(2t))) ⇒  tan((π/4)+t) =((1+tan(t))/(1−tan(t))) ⇒ln(tan((π/4)+t))=ln(1+tant)−ln(1−tant)  ⇒tan(2t+(π/2))ln(tan((π/4)+t))∼((−1)/(2t))×(t−(−t)) =−1 ⇒  lim_(t→0)    g(t)=(1/e) =lim_(x→(π/4))

5)letf(x)=(tanx)tan(2x)f(x)=etan(2x)ln(tanx)changementx=π4+tgivexπ4t0f(x)=g(t)=etan(2(π4+t))ln(tan(π4+t))=etan(2t+π2)ln(tan(π4+t))wehavetan(2t+π2)=sin(2t+π2)cos(2t+π2)=1tan(2t)tan(π4+t)=1+tan(t)1tan(t)ln(tan(π4+t))=ln(1+tant)ln(1tant)tan(2t+π2)ln(tan(π4+t))12t×(t(t))=1limt0g(t)=1e=limxπ4

Commented by mathmax by abdo last updated on 04/Feb/20

lim_(x→(π/4))   f(x)=(1/e)

limxπ4f(x)=1e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com