Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 80595 by Power last updated on 04/Feb/20

Commented by Power last updated on 04/Feb/20

prove that

$$\mathrm{prove}\:\mathrm{that} \\ $$

Commented by Power last updated on 04/Feb/20

sir W pls

$$\mathrm{sir}\:\mathrm{W}\:\mathrm{pls} \\ $$

Answered by mind is power last updated on 05/Feb/20

my idee start  withe  tg(3.10)=tg(30),tg(3.50)=tg(150)=tg(180−30)=−tg(30)  tg(3.70)=tg(210)=tg(180+30)=tg(30)=(1/(√3))  ⇒−tg(50),tg(10),tg(70) Root of Somm polynomial in tan(a)  tan(3a)=((tan(a)+tan(2a))/(1−tan(a)tan(2a)))  tan(2a)=((2tan(a))/(1−tan^2 (a)))⇒tan(3a)=((3tan(a)−tan^3 (a))/(1−3tan^2 (a)))  (−tan(50),tan(10),tan(70)) Root of  ((3X−X^3 )/(1−3X^2 ))=(1/(√3))⇔X^3 −(√3)X−3X+(1/(√3))=0  a=tan(10),b=tan(70),c=−tan(50)  Viet identities⇒  a+b+c=(√3)=e_1   e_2 =ab+bc+ca=−3  e_3 =abc=−(1/(√3)),e_n =0,∀n≥4  we use newtoon identities  let p_k =a^k +b^k +c^k   p_1 =e_1 =(√3)  p_2 =e_1 p_1 −2e_2 =9  p_3 =e_1 p_2 −e_2 p_1 +3e_3 =11(√3)  p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1 =59  p_5 =e_1 p_4 −e_2 p_3 +e_3 p_2 =89(√5)  p_6 =e_1 p_5 −e_2 p_4 +e_3 p_3 =89(√3).(√3)+3.59−(1/(√3)).11(√3)=433  p_6 =a^6 +b^6 +c^6 =tg^6 (10)+(−tg(50))^6 +tg^6 (70)=433  =tg^6 (10)+tg^6 (50)+tg^6 (70)=433  We get our results

$${my}\:{idee}\:{start} \\ $$$${withe} \\ $$$${tg}\left(\mathrm{3}.\mathrm{10}\right)={tg}\left(\mathrm{30}\right),{tg}\left(\mathrm{3}.\mathrm{50}\right)={tg}\left(\mathrm{150}\right)={tg}\left(\mathrm{180}−\mathrm{30}\right)=−{tg}\left(\mathrm{30}\right) \\ $$$${tg}\left(\mathrm{3}.\mathrm{70}\right)={tg}\left(\mathrm{210}\right)={tg}\left(\mathrm{180}+\mathrm{30}\right)={tg}\left(\mathrm{30}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow−{tg}\left(\mathrm{50}\right),{tg}\left(\mathrm{10}\right),{tg}\left(\mathrm{70}\right)\:{Root}\:{of}\:{Somm}\:{polynomial}\:{in}\:{tan}\left({a}\right) \\ $$$${tan}\left(\mathrm{3}{a}\right)=\frac{{tan}\left({a}\right)+{tan}\left(\mathrm{2}{a}\right)}{\mathrm{1}−{tan}\left({a}\right){tan}\left(\mathrm{2}{a}\right)} \\ $$$${tan}\left(\mathrm{2}{a}\right)=\frac{\mathrm{2}{tan}\left({a}\right)}{\mathrm{1}−{tan}^{\mathrm{2}} \left({a}\right)}\Rightarrow{tan}\left(\mathrm{3}{a}\right)=\frac{\mathrm{3}{tan}\left({a}\right)−{tan}^{\mathrm{3}} \left({a}\right)}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} \left({a}\right)} \\ $$$$\left(−{tan}\left(\mathrm{50}\right),{tan}\left(\mathrm{10}\right),{tan}\left(\mathrm{70}\right)\right)\:{Root}\:{of} \\ $$$$\frac{\mathrm{3}{X}−{X}^{\mathrm{3}} }{\mathrm{1}−\mathrm{3}{X}^{\mathrm{2}} }=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\Leftrightarrow{X}^{\mathrm{3}} −\sqrt{\mathrm{3}}{X}−\mathrm{3}{X}+\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}=\mathrm{0} \\ $$$${a}={tan}\left(\mathrm{10}\right),{b}={tan}\left(\mathrm{70}\right),{c}=−{tan}\left(\mathrm{50}\right) \\ $$$${Viet}\:{identities}\Rightarrow \\ $$$${a}+{b}+{c}=\sqrt{\mathrm{3}}={e}_{\mathrm{1}} \\ $$$${e}_{\mathrm{2}} ={ab}+{bc}+{ca}=−\mathrm{3} \\ $$$${e}_{\mathrm{3}} ={abc}=−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}},{e}_{{n}} =\mathrm{0},\forall{n}\geqslant\mathrm{4} \\ $$$${we}\:{use}\:{newtoon}\:{identities} \\ $$$${let}\:{p}_{{k}} ={a}^{{k}} +{b}^{{k}} +{c}^{{k}} \\ $$$${p}_{\mathrm{1}} ={e}_{\mathrm{1}} =\sqrt{\mathrm{3}} \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −\mathrm{2}{e}_{\mathrm{2}} =\mathrm{9} \\ $$$${p}_{\mathrm{3}} ={e}_{\mathrm{1}} {p}_{\mathrm{2}} −{e}_{\mathrm{2}} {p}_{\mathrm{1}} +\mathrm{3}{e}_{\mathrm{3}} =\mathrm{11}\sqrt{\mathrm{3}} \\ $$$${p}_{\mathrm{4}} ={e}_{\mathrm{1}} {p}_{\mathrm{3}} −{e}_{\mathrm{2}} {p}_{\mathrm{2}} +{e}_{\mathrm{3}} {p}_{\mathrm{1}} =\mathrm{59} \\ $$$${p}_{\mathrm{5}} ={e}_{\mathrm{1}} {p}_{\mathrm{4}} −{e}_{\mathrm{2}} {p}_{\mathrm{3}} +{e}_{\mathrm{3}} {p}_{\mathrm{2}} =\mathrm{89}\sqrt{\mathrm{5}} \\ $$$${p}_{\mathrm{6}} ={e}_{\mathrm{1}} {p}_{\mathrm{5}} −{e}_{\mathrm{2}} {p}_{\mathrm{4}} +{e}_{\mathrm{3}} {p}_{\mathrm{3}} =\mathrm{89}\sqrt{\mathrm{3}}.\sqrt{\mathrm{3}}+\mathrm{3}.\mathrm{59}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}.\mathrm{11}\sqrt{\mathrm{3}}=\mathrm{433} \\ $$$${p}_{\mathrm{6}} ={a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} ={tg}^{\mathrm{6}} \left(\mathrm{10}\right)+\left(−{tg}\left(\mathrm{50}\right)\right)^{\mathrm{6}} +{tg}^{\mathrm{6}} \left(\mathrm{70}\right)=\mathrm{433} \\ $$$$={tg}^{\mathrm{6}} \left(\mathrm{10}\right)+{tg}^{\mathrm{6}} \left(\mathrm{50}\right)+{tg}^{\mathrm{6}} \left(\mathrm{70}\right)=\mathrm{433}\:\:{We}\:{get}\:{our}\:{results} \\ $$$$ \\ $$$$ \\ $$

Commented by Power last updated on 05/Feb/20

thank you sir. Great!

$$\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{sir}}.\:\boldsymbol{\mathrm{Great}}! \\ $$

Commented by mind is power last updated on 05/Feb/20

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com