Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80612 by M±th+et£s last updated on 04/Feb/20

 Ψ(x)=∫_1 ^x (1/(√(1−e^t ))) dt     ∀x∈R  prove that  Ψ(x)=2ln(((1−(√(1−e^x )))/(1−(√(1−e)))))−x+1

Ψ(x)=1x11etdtxRprovethatΨ(x)=2ln(11ex11e)x+1

Commented by mathmax by abdo last updated on 04/Feb/20

1−e<0 so there is aerror in the question!

1e<0sothereisaerrorinthequestion!

Commented by mathmax by abdo last updated on 04/Feb/20

perhaps Φ(x)=∫_1 ^x  (dt/(√(1−e^(−t) )))  or Φ(x)=∫_1 ^x  (dt/(√(1+e^t ))) or Φ(x)=∫_1 ^x  (dt/(√(1+e^(−t) )))

perhapsΦ(x)=1xdt1etorΦ(x)=1xdt1+etorΦ(x)=1xdt1+et

Commented by mathmax by abdo last updated on 04/Feb/20

let take  Φ(x)=∫_1 ^(x )  (dt/(√(1−e^(−t) )))  changement (√(1−e^(−t) ))=u give  1−e^(−t) =u^2  ⇒e^(−t) =1−u^2  ⇒−t=ln(1−u^2 ) ⇒t=−ln(1−u^2 ) ⇒  Φ(x)= ∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))       ((2u)/((1−u^2 )u))du =2 ∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))     (du/((1−u)(1+u)))  =∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))    {(1/(1+u))+(1/(1−u))}du=[ln∣((1+u)/(1−u))∣]_(√(1−e^(−1) )) ^(√(1−e^(−x) ))   =ln∣((1+(√(1−e^(−x) )))/(1−(√(1−e^(−x) ))))∣−ln∣((1+(√(1−e^(−1) )))/(1−(√(1−e^(−1) ))))∣★

lettakeΦ(x)=1xdt1etchangement1et=ugive1et=u2et=1u2t=ln(1u2)t=ln(1u2)Φ(x)=1e11ex2u(1u2)udu=21e11exdu(1u)(1+u)=1e11ex{11+u+11u}du=[ln1+u1u]1e11ex=ln1+1ex11exln1+1e111e1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com