Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 80613 by M±th+et£s last updated on 04/Feb/20

Q.find   (d/dx)(x!)

Q.findddx(x!)

Commented by Rio Michael last updated on 04/Feb/20

 i don′t think this exist, from my understanding  x! = x(x−1)! has a domain of D = x ∈ N^∗   tbat means we have no specific interval  for which x! is not continous , A non−continous function  is non−defferentiable hence i think  (d/dx)(x!) cannot be calculated .  please give me your oppinion

idontthinkthisexist,frommyunderstandingx!=x(x1)!hasadomainofD=xNtbatmeanswehavenospecificintervalforwhichx!isnotcontinous,Anoncontinousfunctionisnondefferentiablehenceithinkddx(x!)cannotbecalculated.pleasegivemeyouroppinion

Commented by MJS last updated on 04/Feb/20

(d/dx)[x!] does not exist because x! is only  defined on N ⇒ it′s not continuous  Γ(x) is the extension of x! but both are not  the same  so if you ask for (d/dx)[x!] the correct answer  is “does not exist”  mathematical language is precise language    x!=Γ(x+1) is true ∀x∈N  but  Γ(x)≠(x−1)! ∀x∈R\N

ddx[x!]doesnotexistbecausex!isonlydefinedonNitsnotcontinuousΓ(x)istheextensionofx!butbotharenotthesamesoifyouaskforddx[x!]thecorrectanswerisdoesnotexistmathematicallanguageispreciselanguagex!=Γ(x+1)istruexNbutΓ(x)(x1)!xRN

Answered by M±th+et£s last updated on 04/Feb/20

Γ(x)=(x−1)!=∫_0 ^∞ t^(x−1) e^(−t) dt  ⇒(1/(Γ(x)))=xe^(γx) Π_(k=1) ^∞ (1+(x/k))e^(((−x)/k) )   ln((1/(Γ(x))))=−ln(Γ(x))=lnx+γx+Σ_(k=1) ^∞ [ln(1+(x/k))−(x/k)]  (d/dx)(−ln(Γ(x)))=((Γ′(x))/(Γ(x)))=(1/x)+γ+Σ_(k=1) ^∞ [(1/(1+(x/k))).(1/k)−(1/k)]  ⇒((Γ′(x))/(Γ(x)))= −(1/x)−γ+Σ_(k=1) ^∞ [(1/k)−(1/(k+x))]=Ψ(x)  Ψ(x)=−γ+Σ_(k=1) ^∞ ((1/k)−(1/(k−1+x)))  Ψ(x+1)=−γ+Σ_(k=1) ^∞ [(1/k)−(1/(k+x))]=((Γ′(x+1))/(Γ(x+1)))  Γ′(x+1)=Ψ(x+1)Γ(x+1)  (d/dx)=Γ(x+1)Ψ(x+1)

Γ(x)=(x1)!=0tx1etdt1Γ(x)=xeγxk=1(1+xk)exkln(1Γ(x))=ln(Γ(x))=lnx+γx+k=1[ln(1+xk)xk]ddx(ln(Γ(x)))=Γ(x)Γ(x)=1x+γ+k=1[11+xk.1k1k]Γ(x)Γ(x)=1xγ+k=1[1k1k+x]=Ψ(x)Ψ(x)=γ+k=1(1k1k1+x)Ψ(x+1)=γ+k=1[1k1k+x]=Γ(x+1)Γ(x+1)Γ(x+1)=Ψ(x+1)Γ(x+1)ddx=Γ(x+1)Ψ(x+1)

Commented by M±th+et£s last updated on 04/Feb/20

Ψ^((m)) (z)=(−1)^(m+1) ∫_0 ^∞ ((t^m e^(−zt) )/(1−e^(−t) ))dt :m>0 and Re(z)>0

Ψ(m)(z)=(1)m+10tmezt1etdt:m>0andRe(z)>0

Commented by mathmax by abdo last updated on 04/Feb/20

Γ(x)=(x−1)! is only a notation...!

Γ(x)=(x1)!isonlyanotation...!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com