Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80614 by M±th+et£s last updated on 04/Feb/20

Commented by mathmax by abdo last updated on 04/Feb/20

A_n =(1/n)Σ_(k=1) ^n ln(a+(k/n))⇒A_n  is a Rieman sum  and lim_(n→+∞)  A_n =∫_0 ^1 ln(a+x)dx =_(a+x=t)   ∫_a ^(1+a) ln(t)dt  =[tln(t)−t]_a ^(1+a)  =(1+a)ln(1+a)−(1+a)−(alna−a)  =(1+a)ln(1+a)−1−a−alna+a  =(1+a)ln(1+a)−alna −1

An=1nk=1nln(a+kn)AnisaRiemansumandlimn+An=01ln(a+x)dx=a+x=ta1+aln(t)dt=[tln(t)t]a1+a=(1+a)ln(1+a)(1+a)(alnaa)=(1+a)ln(1+a)1aalna+a=(1+a)ln(1+a)alna1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com