Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80650 by jagoll last updated on 05/Feb/20

lim_(x→a) (((∣x∣−a)^3 −(∣a∣−a)^3 )/(x−a)) = P , a <0  lim_(x→a)  (((∣x∣−a)^2 −(∣a∣−a)^2 )/(x^2 −ax))=?

limxa(xa)3(aa)3xa=P,a<0 limxa(xa)2(aa)2x2ax=?

Commented byjohn santu last updated on 05/Feb/20

lim_(x→a)  (((∣x∣−a)−(∣a∣−a))/(x−a)) = (P/(3(−2a)^2 )) =(P/(12a^2 ))  ⇒lim_(x→a)  (((∣x∣−a)−(∣a∣−a))/(x−a)) ×lim_(x→a) (((∣x∣−a)+(∣a∣−a))/x)=  (P/(12a^2 ))×((−4a)/a)=−(P/(3a^2 ))

limxa(xa)(aa)xa=P3(2a)2=P12a2 limxa(xa)(aa)xa×limxa(xa)+(aa)x= P12a2×4aa=P3a2

Commented byjagoll last updated on 05/Feb/20

thx mister john

thxmisterjohn

Answered by MJS last updated on 05/Feb/20

P doesn′t exist

Pdoesntexist

Commented byjagoll last updated on 05/Feb/20

why?

why?

Commented byjagoll last updated on 05/Feb/20

i′m correct my question sir

imcorrectmyquestionsir

Commented byMJS last updated on 05/Feb/20

for the corrected question  P=−12a^2   and the 2^(nd)  limit is 4 ∀a<0 which is −(P/(3a^2 ))

forthecorrectedquestion P=12a2 andthe2ndlimitis4a<0whichisP3a2

Commented byjagoll last updated on 05/Feb/20

thank you mister

thankyoumister

Answered by MJS last updated on 05/Feb/20

a<0 ⇒ x<0 if x close enough to a  (1) ⇒ (((∣x∣−a)^3 −(∣a∣−a)^3 )/(x−a))=−x^2 −4ax−7a^2 =_(x→a)   =−12a^2     (2) ⇒ (((∣x∣−a)^2 −(∣a∣−a)^2 )/(x^2 −ax))=((3a)/x)+1=_(x→a) 4

a<0x<0ifxcloseenoughtoa (1)(xa)3(aa)3xa=x24ax7a2=xa =12a2 (2)(xa)2(aa)2x2ax=3ax+1=xa4

Commented byjagoll last updated on 05/Feb/20

how to get −x^2 −4ax−7a^2  mister?

howtogetx24ax7a2mister?

Commented byMJS last updated on 05/Feb/20

r<0 ⇒ ∣r∣=−r  (((−x−a)^3 −(−a−a)^3 )/(x−a))=((−(x+a)^3 +(2a)^3 )/(x−a))=  =((−x^3 −3ax^2 −3a^2 x+7a^3 )/(x−a))=−(((x−a)(x^2 +4ax+7a^2 ))/(x−a))=  =−x^2 −4ax−7a^2

r<0r∣=r (xa)3(aa)3xa=(x+a)3+(2a)3xa= =x33ax23a2x+7a3xa=(xa)(x2+4ax+7a2)xa= =x24ax7a2

Commented byjagoll last updated on 05/Feb/20

oo i understand sir. thank much

ooiunderstandsir.thankmuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com