All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 80690 by ahmadshahhimat775@gmail.com last updated on 05/Feb/20
Commented by jagoll last updated on 05/Feb/20
limx→exlnx−x2−2lnx=limx→ex(lnx−1)−2(lnx−1)=−e2
Commented by abdomathmax last updated on 05/Feb/20
letf(x)=ln(xx)−x2−ln(x2)⇒f(x)=xln(x)−x2−2lnxletx=e+u⇒f(x)=g(u)=(e+u)ln(e+u)−u−e2{1−ln(e+u)}x→e⇒u→0⇒g(u)=(e+u)(1+ln(1+ue))−u−e2{1−ln(e)−ln(1+ue)}=(e+u)ln(1+ue)−2ln(1+ue)⇒g(u)∼(e+u)ue−2×ue(u∈V(0))⇒g(u)∼−u+u2e2×eu=−e2(1+ue)→−e2(u→0)⇒limx→ef(x)=−e2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com