Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 80690 by ahmadshahhimat775@gmail.com last updated on 05/Feb/20

Commented by jagoll last updated on 05/Feb/20

lim_(x→e)  ((xlnx−x)/(2−2lnx)) =lim_(x→e)  ((x(lnx −1))/(−2(lnx−1)))=  −(e/2)

limxexlnxx22lnx=limxex(lnx1)2(lnx1)=e2

Commented by abdomathmax last updated on 05/Feb/20

let f(x)=((ln(x^x )−x)/(2−ln(x^2 ))) ⇒f(x)=((xln(x)−x)/(2−2lnx))  let x=e+u ⇒f(x)=g(u)=(((e+u)ln(e+u)−u−e)/(2{1−ln(e+u)}))  x→e ⇒u→0 ⇒  g(u)=(((e+u)(1+ln(1+(u/e)))−u−e)/(2{1−ln(e)−ln(1+(u/e))}))  =(((e+u)ln(1+(u/e)))/(−2ln(1+(u/e)))) ⇒g(u)∼ (((e+u)(u/e))/(−2×(u/e)))   (u ∈V(0))  ⇒g(u)∼− ((u+(u^2 /e))/2)×(e/u)=−(e/2)(1+(u/e))→−(e/2) (u→0)  ⇒lim_(x→e)    f(x)=−(e/2)

letf(x)=ln(xx)x2ln(x2)f(x)=xln(x)x22lnxletx=e+uf(x)=g(u)=(e+u)ln(e+u)ue2{1ln(e+u)}xeu0g(u)=(e+u)(1+ln(1+ue))ue2{1ln(e)ln(1+ue)}=(e+u)ln(1+ue)2ln(1+ue)g(u)(e+u)ue2×ue(uV(0))g(u)u+u2e2×eu=e2(1+ue)e2(u0)limxef(x)=e2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com