Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80702 by john santu last updated on 05/Feb/20

 { (((1/x)+(1/y)=34)),(((1/(√x))+(1/(√y))=23−(1/(√(xy))) )) :}  find the solution.

{1x+1y=341x+1y=231xyfindthesolution.

Commented by mind is power last updated on 05/Feb/20

let (1/(√x))+(1/(√y))=u  (1/(√(xy))).  ⇒u^2 −2v=34  u=23−v  ⇒(23−v)^2 −2v=34  v^2 −48v+495=0  v∈{15,28}  u≥0⇒v=15 ⇒u=8   { (((1/(√x))+(1/(√y))=8)),(((1/(√x)).(1/(√y))=15)) :}  (1/(√x)),(1/(√y))  root of  X^2 −8X+15  X∈{3,5}  ⇒(x,y)∈{((1/9),(1/(25)));((1/(25)),(1/9))}

let1x+1y=u1xy.u22v=34u=23v(23v)22v=34v248v+495=0v{15,28}u0v=15u=8{1x+1y=81x.1y=151x,1yrootofX28X+15X{3,5}(x,y){(19,125);(125,19)}

Commented by john santu last updated on 05/Feb/20

let (1/(√x))+(1/(√y))=u, (1/(√(xy)))=v  u^2 −2v=34 , u+v=23  u^2 +2u−80=0 ⇒ { ((u=8 )),((u=−10)) :}  for u = 8 , v=15  (1/(√x))+(1/(√y))=8 ∧(1/(√(xy)))=15   (1/(√x))=3 , (1/(√x)) =5 ⇒ x = (1/9) , x=(1/(25))  ∴ ((1/9),(1/(25))) , ((1/(25)), (1/9))

let1x+1y=u,1xy=vu22v=34,u+v=23u2+2u80=0{u=8u=10foru=8,v=151x+1y=81xy=151x=3,1x=5x=19,x=125(19,125),(125,19)

Commented by john santu last updated on 05/Feb/20

great sir

greatsir

Commented by MJS last updated on 06/Feb/20

(1/(√x))=u−v; (1/(√y))=u+v; u−v>0∧u+v>0   { ((v^2 =17−u^2 )),((u^2 +u−20=0)) :}   { ((v_1 =±2(√2)i; v_2 =±1)),((u_1 =−5; u_2 =4)) :}  [u_1 , v_1  not useable]  (1/(√x))=5∧(1/(√y))=3 ∨ (1/(√x))=3∧(1/(√y))=5  x=(1/(25))∧y=(1/9) ∨ x=(1/9)∧y=(1/(25))

1x=uv;1y=u+v;uv>0u+v>0{v2=17u2u2+u20=0{v1=±22i;v2=±1u1=5;u2=4[u1,v1notuseable]1x=51y=31x=31y=5x=125y=19x=19y=125

Answered by behi83417@gmail.com last updated on 05/Feb/20

(1/x)=t^2 ,(1/y)=s^2   ⇒ { ((t^2 +s^2 =34)),((t+s=23−ts)) :}⇒_(ts=q) ^(t+s=p)    { (((t+s)^2 −2ts=34)),((t+s+ts=23)) :}  ⇒ { ((p^2 −2q=34)),((p+q=23)) :}⇒p^2 −2(23−p)−34=0  ⇒p^2 +2p+1=34+46+1⇒(p+1)^2 =81  ⇒p+1=±9⇒ { ((p=8⇒q=15)),((p=−10⇒q=33)) :}  ⇒ { (([p=8,q=15]⇒[(1/(√x))=3,5,(1/(√y))=5,3])),((⇒(x,y)=((1/9),(1/(25))),((1/(25)),(1/9)))) :}  ⇒ { (([p=−10,q=33]⇒z^2 +10z+33=0)),((z=−5±(√(25−4×33))=−5±(√(107))i)) :}  ⇒(1/(√x))=−5±(√(107))i⇒ { ((x=(1/((−5−(√(107))i)^2 )))),((y=(1/((−5+(√(107))i)^2 )))) :}

1x=t2,1y=s2{t2+s2=34t+s=23tst+s=pts=q{(t+s)22ts=34t+s+ts=23{p22q=34p+q=23p22(23p)34=0p2+2p+1=34+46+1(p+1)2=81p+1=±9{p=8q=15p=10q=33{[p=8,q=15][1x=3,5,1y=5,3](x,y)=(19,125),(125,19){[p=10,q=33]z2+10z+33=0z=5±254×33=5±107i1x=5±107i{x=1(5107i)2y=1(5+107i)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com