Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 80708 by M±th+et£s last updated on 05/Feb/20

find sum of the series  Σ_(n=0) ^∞ (((−1)^n )/((2n+1)(2n+3)))

findsumoftheseriesn=0(1)n(2n+1)(2n+3)

Commented by abdomathmax last updated on 05/Feb/20

S=Σ_(n=0) ^∞  (((−1)^n )/((2n+1)(2n+3))) =(1/2)Σ_(n=0) ^∞ (−1)^n {(1/(2n+1))−(1/(2n+3))}   ⇒2S=Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) −Σ_(n=0) ^∞  (((−1)^n )/(2n+3))  we[have  Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) =(π/4)  Σ_(n=0) ^∞  (((−1)^n )/(2n+3)) =(1/3) +Σ_(n=1) ^∞  (((−1)^n )/(2n+3))  (n=p−1)  =(1/3)+Σ_(p=2) ^∞  (((−1)^(p−1) )/(2p+1)) =(1/3) −Σ_(p=2) ^∞  (((−1)^p )/(2p+1))  =(1/3)−{Σ_(p=0) ^∞  (((−1)^p )/(2p+1))−(1−(1/3))}  =(1/3)−(π/4) +(2/3)=1−(π/4) ⇒2S=(π/2)−1  S=(π/4)−(1/2)

S=n=0(1)n(2n+1)(2n+3)=12n=0(1)n{12n+112n+3}2S=n=0(1)n2n+1n=0(1)n2n+3we[haven=0(1)n2n+1=π4n=0(1)n2n+3=13+n=1(1)n2n+3(n=p1)=13+p=2(1)p12p+1=13p=2(1)p2p+1=13{p=0(1)p2p+1(113)}=13π4+23=1π42S=π21S=π412

Commented by M±th+et£s last updated on 05/Feb/20

nice solution sir

nicesolutionsir

Commented by mathmax by abdo last updated on 05/Feb/20

thanks.

thanks.

Answered by mind is power last updated on 05/Feb/20

Σ_(n=0) ^(+∞) (((−1)^n )/(2n+1))  (1/(1+x^2 ))=Σ_(k≥0) (−1)^k x^(2k)   ⇒arctan(x)=Σ_(k≥0) (((−1)^k )/(2k+1))x^(2k+1)   ⇒Σ_(k≥0) (((−1)^k )/(2k+1))=arctan(1)=(π/4)  Σ_(k≥0) (((−1)^k )/(2k+3))=Σ_(k≥1)  (((−1)^(k−1) )/(2k+1))⇒Σ_(k≥0) (((−1)^k )/(2k+3))=−(Σ_(k≥0) (((−1)^k )/(2k+1))−1)  =−(π/4)+1  Σ_(n≥0) (((−1)^n )/((2n+1)(2n+3)))=(1/2){Σ_(n≥0) (((−1)^n )/(2n+1))−Σ(((−1)^n )/(2n+3))}  =(1/2){(π/4)−(−(π/4)+1)}=(π/4)−(1/2)

+n=0(1)n2n+111+x2=k0(1)kx2karctan(x)=k0(1)k2k+1x2k+1k0(1)k2k+1=arctan(1)=π4k0(1)k2k+3=k1(1)k12k+1k0(1)k2k+3=(k0(1)k2k+11)=π4+1n0(1)n(2n+1)(2n+3)=12{n0(1)n2n+1Σ(1)n2n+3}=12{π4(π4+1)}=π412

Commented by mr W last updated on 05/Feb/20

wonderful solution sir!

wonderfulsolutionsir!

Commented by M±th+et£s last updated on 05/Feb/20

god bless you sir . thank you

godblessyousir.thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com