All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 80764 by M±th+et£s last updated on 06/Feb/20
showthat∫0∞xarctanh(e−αx)dx=7ζ(3)8α2
Answered by ~blr237~ last updated on 06/Feb/20
letbef(α)=∫0∞xargth(e−αx)dxf(α)exist⇔∀x>0e−αx<1⇔α>0causeargthx=12ln(1+x1−x)letstateu=e−αx⇔x=−lnuαf(α)=12α2∫01−lnuuln(1+u1−u)du2α2f(α)=∫01lnuln(1−u)udu−∫01lnuln(1+u)udu2α2f(α)=−∑∞n=1∫01un−1nlnudu−∑∞n=1∫01(−u)n−1nlnudu2α2f(α)=∑∞n=11n3+∑∞n=1(−1)n−1n32α2f(α)=∑∞n=11(2n)3+∑∞n=11(2n+1)3+∑∞n=1(−1)2n−1(2n)3+∑∞n=1(−1)2n+1−1(2n+1)32α2f(α)=2∑∞n=11(2n+1)3=2(∑∞n=11n3−∑∞n=11(2n)3)=2×(1−18)∑∞n=11n3sof(α)=7ζ(3)8α2
Commented by M±th+et£s last updated on 06/Feb/20
thankyousir.nicesolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com