Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80764 by M±th+et£s last updated on 06/Feb/20

show that  ∫_0 ^∞ x arctanh(e^(−αx) )dx=((7ζ(3))/(8α^2 ))

showthat0xarctanh(eαx)dx=7ζ(3)8α2

Answered by ~blr237~ last updated on 06/Feb/20

let be  f(α)=∫_0 ^∞ xargth(e^(−αx) )dx  f(α) exist ⇔∀ x>0     e^(−αx)  <1 ⇔ α>0   cause  argthx=(1/2)ln(((1+x)/(1−x)))  let state   u=e^(−αx)  ⇔ x=−((lnu)/α)   f(α)=(1/(2α^2 )) ∫_0 ^1  −((lnu)/u) ln(((1+u)/(1−u)))du   2α^2 f(α)= ∫_0 ^1  lnu ((ln(1−u))/u) du −∫_0 ^1 lnu((ln(1+u))/u)du  2α^2 f(α)= −Σ_(n=1) ^∞  ∫_0 ^1 (u^(n−1) /n)lnudu−Σ_(n=1) ^∞  ∫_0 ^1 (((−u)^(n−1) )/n)lnudu   2α^2 f(α)=Σ_(n=1) ^∞  (1/n^3 ) +Σ_(n=1) ^∞  (((−1)^(n−1) )/n^3 )     2α^2 f(α)=Σ_(n=1) ^∞ (1/((2n)^3 )) +Σ_(n=1) ^∞ (1/((2n+1)^3 )) +Σ_(n=1) ^∞ (((−1)^(2n−1) )/((2n)^3 ))+Σ_(n=1) ^∞ (((−1)^(2n+1−1) )/((2n+1)^3 ))   2α^2 f(α)= 2Σ_(n=1) ^∞ (1/((2n+1)^3 )) =2(Σ_(n=1) ^∞  (1/n^3 ) −Σ_(n=1) ^∞  (1/((2n)^3 )) )=2×(1−(1/8))Σ_(n=1) ^∞ (1/n^3 )   so  f(α)=((7ζ(3))/(8α^2 ))

letbef(α)=0xargth(eαx)dxf(α)existx>0eαx<1α>0causeargthx=12ln(1+x1x)letstateu=eαxx=lnuαf(α)=12α201lnuuln(1+u1u)du2α2f(α)=01lnuln(1u)udu01lnuln(1+u)udu2α2f(α)=n=101un1nlnudun=101(u)n1nlnudu2α2f(α)=n=11n3+n=1(1)n1n32α2f(α)=n=11(2n)3+n=11(2n+1)3+n=1(1)2n1(2n)3+n=1(1)2n+11(2n+1)32α2f(α)=2n=11(2n+1)3=2(n=11n3n=11(2n)3)=2×(118)n=11n3sof(α)=7ζ(3)8α2

Commented by M±th+et£s last updated on 06/Feb/20

thank you sir. nice solution

thankyousir.nicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com