Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80846 by TawaTawa last updated on 07/Feb/20

Commented by mathmax by abdo last updated on 07/Feb/20

we havw ∫_(−π) ^π costdt =2∫_0 ^π cost dt =2[sint]_0 ^π =0  ∫_0 ^(π/2)   ((cosθ)/(2−sin(2θ)))dθ =(1/2) ∫_0 ^(π/2) ((cosθ)/(1−cosθ sinθ))dθ=_(tan((θ/2))=t)   =(1/2) ∫_0 ^1  (((1−t^2 )/(1+t^2 ))/(1−((1−t^2 )/(1+t^2 ))×((2t)/(1+t^2 ))))×((2dt)/(1+t^2 )) =∫_0 ^1  ((1−t^2 )/((1+t^2 )^2 {1−((2t(1−t^2 ))/((1+t^2 )^2 ))}))dt  =∫_0 ^1  ((1−t^2 )/((1+t^2 )^2 −2t+2t^3 ))dt =∫_0 ^1  ((1−t^2 )/(t^4 +2t^2  +1−2t +2t^3 ))dt  let decompose  F(t)=((1−t^2 )/(t^4  +2t^3 +2t^2 −2t +1))  the roots of p(x)=t^4  +2t^3 +2t^2 −2t +1 are  α(1+i) ,α(1−i) ,(α+1)(−1+i)  and (α+1)(−1−i)  with α=0,366 ⇒F(t)=((1−t^2 )/((t−α(1+i)(t−α(1−i))(t−(α+1)(−1+i))(t−(α+1)(−1−i)}))  =((1−t^2 )/({t^2 −2Re(α(1+i))t +∣α(1+i)∣^2 }{t^2  −2Re(α+1)(−1+i)t +∣(α+1)(−1+i)∣^2 ))  =((1−t^2 )/({t^2 −2αt  +2α^2 ){t^2  +2 (α+1)t  +2(α+1)^2 }))  =((at +b)/(t^2 −2αt +2α^2 )) +((ct +d)/(t^2  +2(α+1)t +2(α+1)^2 ))  rest to find the coefficient a ,b... any way we have  I=[ln(x+(√(1+x^2 )))]_0 ^(∫_0 ^(π/2)  ((cosθ)/(2−sin(2θ)))dθ)   =ln(∫_0 ^(π/2)  ((cosθ)/(2−sin(2θ)))dθ +(√(1+(∫_0 ^(π/2)  ((cosθ)/(2−sin(2θ)))dθ)^2 )))

$${we}\:{havw}\:\int_{−\pi} ^{\pi} {costdt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\pi} {cost}\:{dt}\:=\mathrm{2}\left[{sint}\right]_{\mathrm{0}} ^{\pi} =\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cos}\theta}{\mathrm{2}−{sin}\left(\mathrm{2}\theta\right)}{d}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}\theta}{\mathrm{1}−{cos}\theta\:{sin}\theta}{d}\theta=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)={t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}×\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left\{\mathrm{1}−\frac{\mathrm{2}{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\right\}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}{t}^{\mathrm{3}} }{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{2}{t}\:+\mathrm{2}{t}^{\mathrm{3}} }{dt} \\ $$$${let}\:{decompose}\:\:{F}\left({t}\right)=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{1}} \\ $$$${the}\:{roots}\:{of}\:{p}\left({x}\right)={t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{1}\:{are} \\ $$$$\alpha\left(\mathrm{1}+{i}\right)\:,\alpha\left(\mathrm{1}−{i}\right)\:,\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}+{i}\right)\:\:{and}\:\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}−{i}\right) \\ $$$${with}\:\alpha=\mathrm{0},\mathrm{366}\:\Rightarrow{F}\left({t}\right)=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left({t}−\alpha\left(\mathrm{1}+{i}\right)\left({t}−\alpha\left(\mathrm{1}−{i}\right)\right)\left({t}−\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}+{i}\right)\right)\left({t}−\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}−{i}\right)\right\}\right.} \\ $$$$=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left\{{t}^{\mathrm{2}} −\mathrm{2}{Re}\left(\alpha\left(\mathrm{1}+{i}\right)\right){t}\:+\mid\alpha\left(\mathrm{1}+{i}\right)\mid^{\mathrm{2}} \right\}\left\{{t}^{\mathrm{2}} \:−\mathrm{2}{Re}\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}+{i}\right){t}\:+\mid\left(\alpha+\mathrm{1}\right)\left(−\mathrm{1}+{i}\right)\mid^{\mathrm{2}} \right.} \\ $$$$=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left\{{t}^{\mathrm{2}} −\mathrm{2}\alpha{t}\:\:+\mathrm{2}\alpha^{\mathrm{2}} \right)\left\{{t}^{\mathrm{2}} \:+\mathrm{2}\:\left(\alpha+\mathrm{1}\right){t}\:\:+\mathrm{2}\left(\alpha+\mathrm{1}\right)^{\mathrm{2}} \right\}} \\ $$$$=\frac{{at}\:+{b}}{{t}^{\mathrm{2}} −\mathrm{2}\alpha{t}\:+\mathrm{2}\alpha^{\mathrm{2}} }\:+\frac{{ct}\:+{d}}{{t}^{\mathrm{2}} \:+\mathrm{2}\left(\alpha+\mathrm{1}\right){t}\:+\mathrm{2}\left(\alpha+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${rest}\:{to}\:{find}\:{the}\:{coefficient}\:{a}\:,{b}...\:{any}\:{way}\:{we}\:{have} \\ $$$${I}=\left[{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\right]_{\mathrm{0}} ^{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cos}\theta}{\mathrm{2}−{sin}\left(\mathrm{2}\theta\right)}{d}\theta} \\ $$$$={ln}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cos}\theta}{\mathrm{2}−{sin}\left(\mathrm{2}\theta\right)}{d}\theta\:+\sqrt{\mathrm{1}+\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cos}\theta}{\mathrm{2}−{sin}\left(\mathrm{2}\theta\right)}{d}\theta\right)^{\mathrm{2}} }\right) \\ $$$$ \\ $$

Commented by TawaTawa last updated on 07/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 08/Feb/20

you are welcome miss tawa  whats your real name...

$${you}\:{are}\:{welcome}\:{miss}\:{tawa}\:\:{whats}\:{your}\:{real}\:{name}... \\ $$

Commented by TawaTawa last updated on 08/Feb/20

Tawa

$$\mathrm{Tawa} \\ $$

Answered by Kamel Kamel last updated on 08/Feb/20

Commented by TawaTawa last updated on 08/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com