Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 80943 by Kunal12588 last updated on 08/Feb/20

Find equation of a plane passing through the  points (x_1 , y_1 , z_1 ), (x_2 , y_2 , z_2 ) and perpendicular  to the plane ax+by+cz=d

$$\mathrm{Find}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{the} \\ $$$$\mathrm{points}\:\left({x}_{\mathrm{1}} ,\:{y}_{\mathrm{1}} ,\:{z}_{\mathrm{1}} \right),\:\left({x}_{\mathrm{2}} ,\:{y}_{\mathrm{2}} ,\:{z}_{\mathrm{2}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{plane}\:{ax}+{by}+{cz}={d} \\ $$

Answered by mr W last updated on 08/Feb/20

say projection of P(x_1 ,y_1 ,z_1 ) an the plane  ax+by+cz=d is P ′(x_3 ,y_3 ,z_3 )  x_3 =x_1 +at  y_3 =y_1 +bt  z_3 =z_1 +ct  a(x_1 +at)+b(y_1 +bt)+c(z_1 +ct)=d  ax_1 +by_1 +cz_1 +(a^2 +b^2 +c^2 )t=d  ⇒t=((d−ax_1 −by_1 −cz_1 )/(a^2 +b^2 +c^2 ))  ⇒x_3 =x_1 +((a(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 ))  ⇒y_3 =y_1 +((b(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 ))  ⇒z_3 =z_1 +((c(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 ))  the requested plane passes through  (x_1 ,y_1 ,z_1 ),(x_2 ,y_2 ,z_2 ),(x_3 ,y_3 ,z_3 ) and its  equation is   determinant (((x−x_1 ),(y−y_1 ),(z−z_1 )),((x_2 −x_1 ),(y_2 −y_1 ),(z_2 −z_1 )),((x_3 −x_1 ),(y_3 −y_1 ),(z_3 −z_1 )))=0  or   determinant (((x−x_1 ),(y−y_1 ),(z−z_1 )),((x_2 −x_1 ),(y_2 −y_1 ),(z_2 −z_1 )),(((a(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 )),((b(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 )),((c(d−ax_1 −by_1 −cz_1 ))/(a^2 +b^2 +c^2 ))))=0

$${say}\:{projection}\:{of}\:{P}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right)\:{an}\:{the}\:{plane} \\ $$$${ax}+{by}+{cz}={d}\:{is}\:{P}\:'\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} ,{z}_{\mathrm{3}} \right) \\ $$$${x}_{\mathrm{3}} ={x}_{\mathrm{1}} +{at} \\ $$$${y}_{\mathrm{3}} ={y}_{\mathrm{1}} +{bt} \\ $$$${z}_{\mathrm{3}} ={z}_{\mathrm{1}} +{ct} \\ $$$${a}\left({x}_{\mathrm{1}} +{at}\right)+{b}\left({y}_{\mathrm{1}} +{bt}\right)+{c}\left({z}_{\mathrm{1}} +{ct}\right)={d} \\ $$$${ax}_{\mathrm{1}} +{by}_{\mathrm{1}} +{cz}_{\mathrm{1}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){t}={d} \\ $$$$\Rightarrow{t}=\frac{{d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\Rightarrow{x}_{\mathrm{3}} ={x}_{\mathrm{1}} +\frac{{a}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{\mathrm{3}} ={y}_{\mathrm{1}} +\frac{{b}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\Rightarrow{z}_{\mathrm{3}} ={z}_{\mathrm{1}} +\frac{{c}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$${the}\:{requested}\:{plane}\:{passes}\:{through} \\ $$$$\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right),\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right),\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} ,{z}_{\mathrm{3}} \right)\:{and}\:{its} \\ $$$${equation}\:{is} \\ $$$$\begin{vmatrix}{{x}−{x}_{\mathrm{1}} }&{{y}−{y}_{\mathrm{1}} }&{{z}−{z}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }&{{y}_{\mathrm{2}} −{y}_{\mathrm{1}} }&{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }\\{{x}_{\mathrm{3}} −{x}_{\mathrm{1}} }&{{y}_{\mathrm{3}} −{y}_{\mathrm{1}} }&{{z}_{\mathrm{3}} −{z}_{\mathrm{1}} }\end{vmatrix}=\mathrm{0} \\ $$$${or} \\ $$$$\begin{vmatrix}{{x}−{x}_{\mathrm{1}} }&{{y}−{y}_{\mathrm{1}} }&{{z}−{z}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }&{{y}_{\mathrm{2}} −{y}_{\mathrm{1}} }&{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }\\{\frac{{a}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}&{\frac{{b}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}&{\frac{{c}\left({d}−{ax}_{\mathrm{1}} −{by}_{\mathrm{1}} −{cz}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\end{vmatrix}=\mathrm{0} \\ $$

Commented by peter frank last updated on 08/Feb/20

sir  if you get time please  help Qn  80199

$${sir}\:\:{if}\:{you}\:{get}\:{time}\:{please} \\ $$$${help}\:{Qn}\:\:\mathrm{80199} \\ $$

Commented by Kunal12588 last updated on 08/Feb/20

thank you very much sir.  while I was doing :)  suppose eq^n  of req. plane is a_1 x+b_1 y+c_1 z=d_1   given points satisfy the plane  ∴ (i) a_1 x_1 +b_1 y_1 +c_1 z_1 =d_1        (ii) a_1 x_2 +b_1 y_2 +c_1 z_2 =d_1   req. plane ⊥ (ax+by+cz)  ⇒ (iii)  a_1 a+b_1 b+c_1 c=0  I only knew this much   3 eq^n s 4 unknowns(a_1 ,b_1 ,c_1 ,d_1 ).  what you did is find a point in the line of  intersection of the planes. okay I will  remember.  Thanks once again sir.

$${thank}\:{you}\:{very}\:{much}\:{sir}. \\ $$$$\left.{while}\:{I}\:{was}\:{doing}\::\right) \\ $$$${suppose}\:{eq}^{{n}} \:{of}\:{req}.\:{plane}\:{is}\:{a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}={d}_{\mathrm{1}} \\ $$$${given}\:{points}\:{satisfy}\:{the}\:{plane} \\ $$$$\therefore\:\left({i}\right)\:{a}_{\mathrm{1}} {x}_{\mathrm{1}} +{b}_{\mathrm{1}} {y}_{\mathrm{1}} +{c}_{\mathrm{1}} {z}_{\mathrm{1}} ={d}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\left({ii}\right)\:{a}_{\mathrm{1}} {x}_{\mathrm{2}} +{b}_{\mathrm{1}} {y}_{\mathrm{2}} +{c}_{\mathrm{1}} {z}_{\mathrm{2}} ={d}_{\mathrm{1}} \\ $$$${req}.\:{plane}\:\bot\:\left({ax}+{by}+{cz}\right) \\ $$$$\Rightarrow\:\left({iii}\right)\:\:{a}_{\mathrm{1}} {a}+{b}_{\mathrm{1}} {b}+{c}_{\mathrm{1}} {c}=\mathrm{0} \\ $$$${I}\:{only}\:{knew}\:{this}\:{much}\: \\ $$$$\mathrm{3}\:{eq}^{{n}} {s}\:\mathrm{4}\:{unknowns}\left({a}_{\mathrm{1}} ,{b}_{\mathrm{1}} ,{c}_{\mathrm{1}} ,{d}_{\mathrm{1}} \right). \\ $$$${what}\:{you}\:{did}\:{is}\:{find}\:{a}\:{point}\:{in}\:{the}\:{line}\:{of} \\ $$$${intersection}\:{of}\:{the}\:{planes}.\:{okay}\:{I}\:{will} \\ $$$${remember}. \\ $$$${Thanks}\:{once}\:{again}\:{sir}. \\ $$

Commented by mr W last updated on 08/Feb/20

there are many ways to get the eqn.

$${there}\:{are}\:{many}\:{ways}\:{to}\:{get}\:{the}\:{eqn}. \\ $$

Commented by mr W last updated on 08/Feb/20

for the eqn. of the requested  plane   a_1 x+b_1 y+c_1 z=d_1   you actually only need to know the  ratios of the coefficients, e.g.  a_1 x+b_1 y+c_1 z=1  then you have three unknowns and  three equations.

$${for}\:{the}\:{eqn}.\:{of}\:{the}\:{requested}\:\:{plane}\: \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}={d}_{\mathrm{1}} \\ $$$${you}\:{actually}\:{only}\:{need}\:{to}\:{know}\:{the} \\ $$$${ratios}\:{of}\:{the}\:{coefficients},\:{e}.{g}. \\ $$$${a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} {z}=\mathrm{1} \\ $$$${then}\:{you}\:{have}\:{three}\:{unknowns}\:{and} \\ $$$${three}\:{equations}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com