Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 80977 by ajfour last updated on 08/Feb/20

Commented by ajfour last updated on 08/Feb/20

Regions A and B have equal  area, find radius of circle,  centered at origin.

$${Regions}\:{A}\:{and}\:{B}\:{have}\:{equal} \\ $$$${area},\:{find}\:{radius}\:{of}\:{circle}, \\ $$$${centered}\:{at}\:{origin}. \\ $$

Commented by ajfour last updated on 08/Feb/20

Also find radius ratio of  incircle in region A to that of  incircle in region B.   (say  a/b=? ).

$${Also}\:{find}\:{radius}\:{ratio}\:{of} \\ $$$${incircle}\:{in}\:{region}\:{A}\:{to}\:{that}\:{of} \\ $$$${incircle}\:{in}\:{region}\:{B}.\: \\ $$$$\left({say}\:\:{a}/{b}=?\:\right). \\ $$

Commented by mr W last updated on 08/Feb/20

i got R≈2.35223

$${i}\:{got}\:{R}\approx\mathrm{2}.\mathrm{35223} \\ $$

Commented by ajfour last updated on 08/Feb/20

Commented by ajfour last updated on 08/Feb/20

let F(h,h^2 )  S=∫_0 ^( h) [hx−x^2 ]dx=(h^3 /6)  R=h(√(1+h^2 ))  ((R^2 (tan^(−1) h))/2)−((2h^3 )/6)=(R^2 /2)((π/2)−tan^(−1) h)  h^2 (1+h^2 ){tan^(−1) h−(π/4)}=(h^3 /3)  ⇒ tan^(−1) h=(π/4)+(h/(3(1+h^2 )))  R=h(√(1+h^2 ))   ..........

$${let}\:{F}\left({h},{h}^{\mathrm{2}} \right) \\ $$$${S}=\int_{\mathrm{0}} ^{\:{h}} \left[{hx}−{x}^{\mathrm{2}} \right]{dx}=\frac{{h}^{\mathrm{3}} }{\mathrm{6}} \\ $$$${R}={h}\sqrt{\mathrm{1}+{h}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{R}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} {h}\right)}{\mathrm{2}}−\frac{\mathrm{2}{h}^{\mathrm{3}} }{\mathrm{6}}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {h}\right) \\ $$$${h}^{\mathrm{2}} \left(\mathrm{1}+{h}^{\mathrm{2}} \right)\left\{\mathrm{tan}^{−\mathrm{1}} {h}−\frac{\pi}{\mathrm{4}}\right\}=\frac{{h}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{tan}^{−\mathrm{1}} {h}=\frac{\pi}{\mathrm{4}}+\frac{{h}}{\mathrm{3}\left(\mathrm{1}+{h}^{\mathrm{2}} \right)} \\ $$$${R}={h}\sqrt{\mathrm{1}+{h}^{\mathrm{2}} }\: \\ $$$$.......... \\ $$

Commented by ajfour last updated on 08/Feb/20

thats right sir, at least i got the  same,  R≈2.35223015

$${thats}\:{right}\:{sir},\:{at}\:{least}\:{i}\:{got}\:{the} \\ $$$${same},\:\:{R}\approx\mathrm{2}.\mathrm{35223015} \\ $$

Answered by mr W last updated on 08/Feb/20

Commented by mr W last updated on 08/Feb/20

F(h,h^2 )  R=OF=(√(h^2 +h^4 ))=h(√(1+h^2 ))  tan α=(h^2 /h)=h  β=(π/2)−α  Area B=((2h^3 )/3)+(R^2 /4)(2β−sin 2β)=((πR^2 )/8)  ((16h^3 )/(3R^2 ))+2π−4α−2sin (π−2α)=π  ((16h)/(3(1+h^2 )))+π−4α−2sin 2α=0  ((16h)/(3(1+h^2 )))+π−4α−((4h)/(1+h^2 ))=0  ⇒(h/(3(1+h^2 )))+(π/4)−tan^(−1) h=0  ⇒h≈1.380139  ⇒R≈2.352230    T(t,t^2 )  (θ is marked as α at B in diagram!)  tan θ=2t ⇒t=((tan θ)/2)  x_B =t−b sin θ=b ⇒b=(t/(1+sin θ))=((tan θ)/(2(1+sin θ)))  y_B =t^2 +b cos θ  x_B ^2 +y_B ^2 =(R−b)^2   (t^2 +b cos θ)^2 =R(R−2b)  (((tan^2  θ)/4)+((sin θ)/(2(1+sin θ))))^2 =R(R−((tan θ)/(1+sin θ)))  ⇒θ≈66.999803°  ⇒b≈0.613336    S(s,s^2 )  (ϕ is marked as β at A in diagram!)  tan ϕ=2s ⇒s=((tan ϕ)/2)  x_A =s+a sin ϕ  y_A =s^2 −a cos ϕ=a ⇒a=(s^2 /(1+cos ϕ))=((tan^2  ϕ)/(4(1+cos ϕ)))  x_A ^2 +y_A ^2 =(R−a)^2   (s+a sin ϕ)^2 +a^2 =(R−a)^2   (s+a sin ϕ)^2 =R(R−2a)  tan^2  ϕ(1+(1/(cos ϕ)))^2 =16R(R−((1−cos ϕ)/(2cos^2  ϕ)))  ⇒ϕ≈62.917105°  ⇒a≈0.656990    (a/b)≈1.071174

$${F}\left({h},{h}^{\mathrm{2}} \right) \\ $$$${R}={OF}=\sqrt{{h}^{\mathrm{2}} +{h}^{\mathrm{4}} }={h}\sqrt{\mathrm{1}+{h}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\alpha=\frac{{h}^{\mathrm{2}} }{{h}}={h} \\ $$$$\beta=\frac{\pi}{\mathrm{2}}−\alpha \\ $$$${Area}\:{B}=\frac{\mathrm{2}{h}^{\mathrm{3}} }{\mathrm{3}}+\frac{{R}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{2}\beta−\mathrm{sin}\:\mathrm{2}\beta\right)=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\frac{\mathrm{16}{h}^{\mathrm{3}} }{\mathrm{3}{R}^{\mathrm{2}} }+\mathrm{2}\pi−\mathrm{4}\alpha−\mathrm{2sin}\:\left(\pi−\mathrm{2}\alpha\right)=\pi \\ $$$$\frac{\mathrm{16}{h}}{\mathrm{3}\left(\mathrm{1}+{h}^{\mathrm{2}} \right)}+\pi−\mathrm{4}\alpha−\mathrm{2sin}\:\mathrm{2}\alpha=\mathrm{0} \\ $$$$\frac{\mathrm{16}{h}}{\mathrm{3}\left(\mathrm{1}+{h}^{\mathrm{2}} \right)}+\pi−\mathrm{4}\alpha−\frac{\mathrm{4}{h}}{\mathrm{1}+{h}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{{h}}{\mathrm{3}\left(\mathrm{1}+{h}^{\mathrm{2}} \right)}+\frac{\pi}{\mathrm{4}}−\mathrm{tan}^{−\mathrm{1}} {h}=\mathrm{0} \\ $$$$\Rightarrow{h}\approx\mathrm{1}.\mathrm{380139} \\ $$$$\Rightarrow{R}\approx\mathrm{2}.\mathrm{352230} \\ $$$$ \\ $$$${T}\left({t},{t}^{\mathrm{2}} \right) \\ $$$$\left(\theta\:{is}\:{marked}\:{as}\:\alpha\:{at}\:{B}\:{in}\:{diagram}!\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{t}\:\Rightarrow{t}=\frac{\mathrm{tan}\:\theta}{\mathrm{2}} \\ $$$${x}_{{B}} ={t}−{b}\:\mathrm{sin}\:\theta={b}\:\Rightarrow{b}=\frac{{t}}{\mathrm{1}+\mathrm{sin}\:\theta}=\frac{\mathrm{tan}\:\theta}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)} \\ $$$${y}_{{B}} ={t}^{\mathrm{2}} +{b}\:\mathrm{cos}\:\theta \\ $$$${x}_{{B}} ^{\mathrm{2}} +{y}_{{B}} ^{\mathrm{2}} =\left({R}−{b}\right)^{\mathrm{2}} \\ $$$$\left({t}^{\mathrm{2}} +{b}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} ={R}\left({R}−\mathrm{2}{b}\right) \\ $$$$\left(\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{4}}+\frac{\mathrm{sin}\:\theta}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}\right)^{\mathrm{2}} ={R}\left({R}−\frac{\mathrm{tan}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}\right) \\ $$$$\Rightarrow\theta\approx\mathrm{66}.\mathrm{999803}° \\ $$$$\Rightarrow{b}\approx\mathrm{0}.\mathrm{613336} \\ $$$$ \\ $$$${S}\left({s},{s}^{\mathrm{2}} \right) \\ $$$$\left(\varphi\:{is}\:{marked}\:{as}\:\beta\:{at}\:{A}\:{in}\:{diagram}!\right) \\ $$$$\mathrm{tan}\:\varphi=\mathrm{2}{s}\:\Rightarrow{s}=\frac{\mathrm{tan}\:\varphi}{\mathrm{2}} \\ $$$${x}_{{A}} ={s}+{a}\:\mathrm{sin}\:\varphi \\ $$$${y}_{{A}} ={s}^{\mathrm{2}} −{a}\:\mathrm{cos}\:\varphi={a}\:\Rightarrow{a}=\frac{{s}^{\mathrm{2}} }{\mathrm{1}+\mathrm{cos}\:\varphi}=\frac{\mathrm{tan}^{\mathrm{2}} \:\varphi}{\mathrm{4}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)} \\ $$$${x}_{{A}} ^{\mathrm{2}} +{y}_{{A}} ^{\mathrm{2}} =\left({R}−{a}\right)^{\mathrm{2}} \\ $$$$\left({s}+{a}\:\mathrm{sin}\:\varphi\right)^{\mathrm{2}} +{a}^{\mathrm{2}} =\left({R}−{a}\right)^{\mathrm{2}} \\ $$$$\left({s}+{a}\:\mathrm{sin}\:\varphi\right)^{\mathrm{2}} ={R}\left({R}−\mathrm{2}{a}\right) \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\varphi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{cos}\:\varphi}\right)^{\mathrm{2}} =\mathrm{16}{R}\left({R}−\frac{\mathrm{1}−\mathrm{cos}\:\varphi}{\mathrm{2cos}^{\mathrm{2}} \:\varphi}\right) \\ $$$$\Rightarrow\varphi\approx\mathrm{62}.\mathrm{917105}° \\ $$$$\Rightarrow{a}\approx\mathrm{0}.\mathrm{656990} \\ $$$$ \\ $$$$\frac{{a}}{{b}}\approx\mathrm{1}.\mathrm{071174} \\ $$

Commented by mr W last updated on 08/Feb/20

Commented by ajfour last updated on 08/Feb/20

perfectly perfect sir, what to  say...Evidence enough,  congratulations & lot of thanks!

$${perfectly}\:{perfect}\:{sir},\:{what}\:{to} \\ $$$${say}...{Evidence}\:{enough}, \\ $$$${congratulations}\:\&\:{lot}\:{of}\:{thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com