Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 81054 by peter frank last updated on 09/Feb/20

solve the differential  equation  (a)(d^2 y/dx^2 )=sin^2 (x+y)  (b)(d^2 y/dx^2 )=cos (x+y)

$${solve}\:{the}\:{differential} \\ $$$${equation} \\ $$$$\left({a}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{sin}\:^{\mathrm{2}} \left({x}+{y}\right) \\ $$$$\left({b}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{cos}\:\left({x}+{y}\right) \\ $$

Commented by mr W last updated on 14/Feb/20

let u=x+y  y=u−x  (dy/dx)=(du/dx)−1=t  (d^2 y/dx^2 )=(dt/dx)=(dt/du)×(du/dx)=(1+t)(dt/du)  (b)  (1+t)(dt/du)=cos u  ∫(1+t)dt=∫cos u du  t+(t^2 /2)=sin u+C  t^2 +2t+1=2(sin u+C)  (t+1)^2 =2(sin u+C)  t+1=±(√(2(sin u+C)))  (du/dx)=±(√(2(sin u+C)))  ∫(du/(√(sin u+C)))=±(√2)∫dx  x=±(1/(√2))∫(du/(√(sin u+C)))  x=±(((√2)F((u/2)−(π/4)∣(2/(C+1))))/(√(1+C)))+C_1   ⇒x=±(((√2)F(((x+y)/2)−(π/4)∣(2/(C+1))))/(√(1+C)))+C_1   (a)  (1+t)(dt/du)=sin^2  u  ∫(1+t)dt=∫sin^2  u du  t+(t^2 /2)=(1/2)∫(1−cos 2u)du=(1/4)(2u−sin 2u)+C  t^2 +2t+1=(1/2)(2u−sin 2u+C)  t+1=±((√(2u−sin 2u+C))/(√2))  (du/dx)=±((√(2u−sin 2u+C))/(√2))  ∫(du/(√(2u−sin 2u+C)))=±∫(dx/(√2))  ⇒x=±(√2)∫(du/(√(2u−sin 2u+C)))

$${let}\:{u}={x}+{y} \\ $$$${y}={u}−{x} \\ $$$$\frac{{dy}}{{dx}}=\frac{{du}}{{dx}}−\mathrm{1}={t} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{dt}}{{dx}}=\frac{{dt}}{{du}}×\frac{{du}}{{dx}}=\left(\mathrm{1}+{t}\right)\frac{{dt}}{{du}} \\ $$$$\left({b}\right) \\ $$$$\left(\mathrm{1}+{t}\right)\frac{{dt}}{{du}}=\mathrm{cos}\:{u} \\ $$$$\int\left(\mathrm{1}+{t}\right){dt}=\int\mathrm{cos}\:{u}\:{du} \\ $$$${t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{sin}\:{u}+{C} \\ $$$${t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}=\mathrm{2}\left(\mathrm{sin}\:{u}+{C}\right) \\ $$$$\left({t}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{sin}\:{u}+{C}\right) \\ $$$${t}+\mathrm{1}=\pm\sqrt{\mathrm{2}\left(\mathrm{sin}\:{u}+{C}\right)} \\ $$$$\frac{{du}}{{dx}}=\pm\sqrt{\mathrm{2}\left(\mathrm{sin}\:{u}+{C}\right)} \\ $$$$\int\frac{{du}}{\sqrt{\mathrm{sin}\:{u}+{C}}}=\pm\sqrt{\mathrm{2}}\int{dx} \\ $$$${x}=\pm\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{du}}{\sqrt{\mathrm{sin}\:{u}+{C}}} \\ $$$${x}=\pm\frac{\sqrt{\mathrm{2}}{F}\left(\frac{{u}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\mid\frac{\mathrm{2}}{{C}+\mathrm{1}}\right)}{\sqrt{\mathrm{1}+{C}}}+{C}_{\mathrm{1}} \\ $$$$\Rightarrow{x}=\pm\frac{\sqrt{\mathrm{2}}{F}\left(\frac{{x}+{y}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\mid\frac{\mathrm{2}}{{C}+\mathrm{1}}\right)}{\sqrt{\mathrm{1}+{C}}}+{C}_{\mathrm{1}} \\ $$$$\left({a}\right) \\ $$$$\left(\mathrm{1}+{t}\right)\frac{{dt}}{{du}}=\mathrm{sin}^{\mathrm{2}} \:{u} \\ $$$$\int\left(\mathrm{1}+{t}\right){dt}=\int\mathrm{sin}^{\mathrm{2}} \:{u}\:{du} \\ $$$${t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{u}\right){du}=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}\right)+{C} \\ $$$${t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}+{C}\right) \\ $$$${t}+\mathrm{1}=\pm\frac{\sqrt{\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}+{C}}}{\sqrt{\mathrm{2}}} \\ $$$$\frac{{du}}{{dx}}=\pm\frac{\sqrt{\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}+{C}}}{\sqrt{\mathrm{2}}} \\ $$$$\int\frac{{du}}{\sqrt{\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}+{C}}}=\pm\int\frac{{dx}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{x}=\pm\sqrt{\mathrm{2}}\int\frac{{du}}{\sqrt{\mathrm{2}{u}−\mathrm{sin}\:\mathrm{2}{u}+{C}}} \\ $$

Commented by peter frank last updated on 14/Feb/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com