Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 81193 by ajfour last updated on 10/Feb/20

Commented by ajfour last updated on 10/Feb/20

If both coloured regions have equal  (areas)_(maximum ) , determine α.

$${If}\:{both}\:{coloured}\:{regions}\:{have}\:{equal} \\ $$$$\left({areas}\right)_{{maximum}\:} ,\:{determine}\:\alpha. \\ $$

Commented by jagoll last updated on 10/Feb/20

waw

$${waw} \\ $$

Commented by ajfour last updated on 14/Feb/20

Answered by mr W last updated on 10/Feb/20

Commented by mr W last updated on 10/Feb/20

R=radius of semi−circle  R^2 =a^2 +((a/(tan α))+b−R)^2   b^2 +2((a/(tan α))−R)b+(a^2 /(sin^2  α))−((2aR)/(tan α))=0  b=R−(a/(tan α))+(√((R−(a/(tan α)))^2 −(a^2 /(sin^2  α))+((2aR)/(tan α))))  ⇒b=R+(√(R^2 −a^2 ))−(a/(tan α))  d=2((a/(sin α))−R cos α)  (c+R sin α)^2 +((d/2))^2 =R^2   (c+R sin α)^2 +((a/(sin α))−R cos α)^2 =R^2   c^2 +2R sin α c+((a(a−R sin 2α))/(sin^2  α))=0  ⇒c=((√(R^2 sin^4  α−a(a−R sin 2α)))/(sin α))−R sin α  Area=ab=cd  let λ=(a/R)  P=((Area)/R^2 )=λ(1+(√(1−λ^2 ))−(λ/(tan α)))=2((λ/(sin α))−cos α)[((√(sin^4  α−λ(λ−sin 2α)))/(sin α))−sin α]    now it is to find the maximum of  P=λ(1+(√(1−λ^2 ))−(λ/(tan α)))  under the condition  λ(1+(√(1−λ^2 ))−(λ/(tan α)))=(((2λ−sin 2α)[(√(sin^4  α−λ(λ−sin 2α)))−sin^2  α])/(sin^2  α))    P_(max) ≈0.3795 at α≈27.01°, λ≈0.5943

$${R}={radius}\:{of}\:{semi}−{circle} \\ $$$${R}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{tan}\:\alpha}+{b}−{R}\right)^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} +\mathrm{2}\left(\frac{{a}}{\mathrm{tan}\:\alpha}−{R}\right){b}+\frac{{a}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{2}{aR}}{\mathrm{tan}\:\alpha}=\mathrm{0} \\ $$$${b}={R}−\frac{{a}}{\mathrm{tan}\:\alpha}+\sqrt{\left({R}−\frac{{a}}{\mathrm{tan}\:\alpha}\right)^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{2}{aR}}{\mathrm{tan}\:\alpha}} \\ $$$$\Rightarrow{b}={R}+\sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\frac{{a}}{\mathrm{tan}\:\alpha} \\ $$$${d}=\mathrm{2}\left(\frac{{a}}{\mathrm{sin}\:\alpha}−{R}\:\mathrm{cos}\:\alpha\right) \\ $$$$\left({c}+{R}\:\mathrm{sin}\:\alpha\right)^{\mathrm{2}} +\left(\frac{{d}}{\mathrm{2}}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\left({c}+{R}\:\mathrm{sin}\:\alpha\right)^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{sin}\:\alpha}−{R}\:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} +\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:{c}+\frac{{a}\left({a}−{R}\:\mathrm{sin}\:\mathrm{2}\alpha\right)}{\mathrm{sin}^{\mathrm{2}} \:\alpha}=\mathrm{0} \\ $$$$\Rightarrow{c}=\frac{\sqrt{{R}^{\mathrm{2}} \mathrm{sin}^{\mathrm{4}} \:\alpha−{a}\left({a}−{R}\:\mathrm{sin}\:\mathrm{2}\alpha\right)}}{\mathrm{sin}\:\alpha}−{R}\:\mathrm{sin}\:\alpha \\ $$$${Area}={ab}={cd} \\ $$$${let}\:\lambda=\frac{{a}}{{R}} \\ $$$${P}=\frac{{Area}}{{R}^{\mathrm{2}} }=\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }−\frac{\lambda}{\mathrm{tan}\:\alpha}\right)=\mathrm{2}\left(\frac{\lambda}{\mathrm{sin}\:\alpha}−\mathrm{cos}\:\alpha\right)\left[\frac{\sqrt{\mathrm{sin}^{\mathrm{4}} \:\alpha−\lambda\left(\lambda−\mathrm{sin}\:\mathrm{2}\alpha\right)}}{\mathrm{sin}\:\alpha}−\mathrm{sin}\:\alpha\right] \\ $$$$ \\ $$$${now}\:{it}\:{is}\:{to}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${P}=\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }−\frac{\lambda}{\mathrm{tan}\:\alpha}\right) \\ $$$${under}\:{the}\:{condition} \\ $$$$\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }−\frac{\lambda}{\mathrm{tan}\:\alpha}\right)=\frac{\left(\mathrm{2}\lambda−\mathrm{sin}\:\mathrm{2}\alpha\right)\left[\sqrt{\mathrm{sin}^{\mathrm{4}} \:\alpha−\lambda\left(\lambda−\mathrm{sin}\:\mathrm{2}\alpha\right)}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right]}{\mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$$$ \\ $$$${P}_{{max}} \approx\mathrm{0}.\mathrm{3795}\:{at}\:\alpha\approx\mathrm{27}.\mathrm{01}°,\:\lambda\approx\mathrm{0}.\mathrm{5943} \\ $$

Commented by mr W last updated on 10/Feb/20

Commented by mr W last updated on 10/Feb/20

Commented by mr W last updated on 10/Feb/20

Explanation of method i used:  red curve shows the condition  λ(1+(√(1−λ^2 ))−(λ/(tan α)))=(((2λ−sin 2α)[(√(sin^4  α−λ(λ−sin 2α)))−sin^2  α])/(sin^2  α))  the green curves represent the equation  F(λ,α)=λ(1+(√(1−λ^2 ))−(λ/(tan α)))−P=0  with different values of P:  curve 1: with P which fulfills the condition  curve 3: with P which doesn′t fulfill the condition  curve 2: with P_(max)  which  fulfills the condition

$${Explanation}\:{of}\:{method}\:{i}\:{used}: \\ $$$${red}\:{curve}\:{shows}\:{the}\:{condition} \\ $$$$\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }−\frac{\lambda}{\mathrm{tan}\:\alpha}\right)=\frac{\left(\mathrm{2}\lambda−\mathrm{sin}\:\mathrm{2}\alpha\right)\left[\sqrt{\mathrm{sin}^{\mathrm{4}} \:\alpha−\lambda\left(\lambda−\mathrm{sin}\:\mathrm{2}\alpha\right)}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right]}{\mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$$${the}\:{green}\:{curves}\:{represent}\:{the}\:{equation} \\ $$$${F}\left(\lambda,\alpha\right)=\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }−\frac{\lambda}{\mathrm{tan}\:\alpha}\right)−{P}=\mathrm{0} \\ $$$${with}\:{different}\:{values}\:{of}\:{P}: \\ $$$${curve}\:\mathrm{1}:\:{with}\:{P}\:{which}\:{fulfills}\:{the}\:{condition} \\ $$$${curve}\:\mathrm{3}:\:{with}\:{P}\:{which}\:{doesn}'{t}\:{fulfill}\:{the}\:{condition} \\ $$$${curve}\:\mathrm{2}:\:{with}\:{P}_{{max}} \:{which}\:\:{fulfills}\:{the}\:{condition} \\ $$

Commented by ajfour last updated on 10/Feb/20

Thanks Sir, for everything,  but i still shall try at an  analytical way to fetch the  answer, wish me good luck..

$${Thanks}\:{Sir},\:{for}\:{everything}, \\ $$$${but}\:{i}\:{still}\:{shall}\:{try}\:{at}\:{an} \\ $$$${analytical}\:{way}\:{to}\:{fetch}\:{the} \\ $$$${answer},\:{wish}\:{me}\:{good}\:{luck}.. \\ $$

Commented by mr W last updated on 10/Feb/20

yes, i do sir! i wished also a better and  analytical way, but had no idea.

$${yes},\:{i}\:{do}\:{sir}!\:{i}\:{wished}\:{also}\:{a}\:{better}\:{and} \\ $$$${analytical}\:{way},\:{but}\:{had}\:{no}\:{idea}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com