Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 81206 by Power last updated on 10/Feb/20

Commented by mathmax by abdo last updated on 10/Feb/20

let f(x)=Σ_(n=1) ^∞  (((−1)^n )/((2n+1))) x^n  with ∣x∣≤1  and x≠−1  f(x)=Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))x^n −1 =(1/(√x))Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))((√x))^(2n+1)  −1  =(1/(√x))ϕ((√x))−1  with ϕ(x)=Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))x^(2n+1)   we have ϕ^′ (x)=Σ_(n=0) ^∞  (−1)^n  x^(2n) =Σ_(n=0) ^∞ (−x^2 )^n  =(1/(1+x^2 )) ⇒  ϕ(x)=∫ (dx/(1+x^2 )) +c =arctan(x)+c  (c=ϕ(0)=0) ⇒ϕ(x)=arctan(x)  ⇒f(x)=(1/(√x)) arctan((√x))−1  and  Σ_(n=1) ^∞  (((−1)^n )/((2n+1)3^n )) =f((1/3))=(√3)arctan((1/(√3)))−1  =(√3)×(π/6)−1 =((π(√3))/6)−1.

$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{x}^{{n}} \:{with}\:\mid{x}\mid\leqslant\mathrm{1}\:\:{and}\:{x}\neq−\mathrm{1} \\ $$$${f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}{x}^{{n}} −\mathrm{1}\:=\frac{\mathrm{1}}{\sqrt{{x}}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\left(\sqrt{{x}}\right)^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1} \\ $$$$=\frac{\mathrm{1}}{\sqrt{{x}}}\varphi\left(\sqrt{{x}}\right)−\mathrm{1}\:\:{with}\:\varphi\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}{x}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$${we}\:{have}\:\varphi^{'} \left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} =\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{2}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\varphi\left({x}\right)=\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:+{c}\:={arctan}\left({x}\right)+{c}\:\:\left({c}=\varphi\left(\mathrm{0}\right)=\mathrm{0}\right)\:\Rightarrow\varphi\left({x}\right)={arctan}\left({x}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\sqrt{{x}}}\:{arctan}\left(\sqrt{{x}}\right)−\mathrm{1}\:\:{and} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} }\:={f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\sqrt{\mathrm{3}}{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)−\mathrm{1} \\ $$$$=\sqrt{\mathrm{3}}×\frac{\pi}{\mathrm{6}}−\mathrm{1}\:=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{6}}−\mathrm{1}. \\ $$$$ \\ $$

Answered by mind is power last updated on 10/Feb/20

arctan(x)=Σ_(n≥0) (((−1)^n x^(2n+1) )/((2n+1)))  ⇒((arctan(x))/x)=1+Σ_(n≥1) (((−1)^n x^(2n) )/(2n+1))  x=(1/(√3))⇒(√3)arctan((1/(√3)))−1=Σ_(n≥1) (((−1)^n )/((2n+1)3^n ))  ⇔Σ_(n≥1) (((−1)^n )/((2n+1)3^n ))=(√3).(π/6)−1=(π/(2(√3)))−1

$${arctan}\left({x}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\Rightarrow\frac{{arctan}\left({x}\right)}{{x}}=\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$${x}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\Rightarrow\sqrt{\mathrm{3}}{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)−\mathrm{1}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} } \\ $$$$\Leftrightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} }=\sqrt{\mathrm{3}}.\frac{\pi}{\mathrm{6}}−\mathrm{1}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}−\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Commented by Power last updated on 10/Feb/20

thanks

$$\mathrm{thanks} \\ $$

Commented by mind is power last updated on 10/Feb/20

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com